File size: 32,082 Bytes
7bf4b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
import gzip
import json
import os
import os.path as osp
import pickle
import zipfile
from collections import Counter

import numpy as np
import pandas as pd
import torch
from huggingface_hub import hf_hub_download
from ogb.utils.url import download_url
from tqdm import tqdm
from typing import Union

from stark_qa.skb.knowledge_base import SKB
from stark_qa.tools.download_hf import download_hf_file
from stark_qa.tools.io import load_files, save_files
from stark_qa.tools.node import Node, df_row_to_dict, register_node
from stark_qa.tools.process_text import clean_data, compact_text


DATASET = {
    "repo": "snap-stanford/stark",
    "processed": "skb/amazon/processed.zip",
    "metadata": "skb/amazon/category_list.json"
}

RAW_DATA_HEADER = {
    'review_header': 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_v2',
    'qa_header': 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon/qa'
}

class AmazonSKB(SKB):
    
    REVIEW_CATEGORIES = set([
        'Amazon_Fashion', 'All_Beauty', 'Appliances', 'Arts_Crafts_and_Sewing',
        'Automotive', 'Books', 'CDs_and_Vinyl', 'Cell_Phones_and_Accessories',
        'Clothing_Shoes_and_Jewelry', 'Digital_Music', 'Electronics', 'Gift_Cards',
        'Grocery_and_Gourmet_Food', 'Home_and_Kitchen', 'Industrial_and_Scientific',
        'Kindle_Store', 'Luxury_Beauty', 'Magazine_Subscriptions', 'Movies_and_TV',
        'Musical_Instruments', 'Office_Products', 'Patio_Lawn_and_Garden', 'Pet_Supplies',
        'Prime_Pantry', 'Software', 'Sports_and_Outdoors', 'Tools_and_Home_Improvement',
        'Toys_and_Games', 'Video_Games'
    ])
    
    QA_CATEGORIES = set([
        'Appliances', 'Arts_Crafts_and_Sewing', 'Automotive', 'Baby', 'Beauty',
        'Cell_Phones_and_Accessories', 'Clothing_Shoes_and_Jewelry', 'Electronics',
        'Grocery_and_Gourmet_Food', 'Health_and_Personal_Care', 'Home_and_Kitchen',
        'Musical_Instruments', 'Office_Products', 'Patio_Lawn_and_Garden', 'Pet_Supplies',
        'Sports_and_Outdoors', 'Tools_and_Home_Improvement', 'Toys_and_Games', 'Video_Games'
    ])
    
    COMMON = set([
        'Appliances', 'Arts_Crafts_and_Sewing', 'Automotive', 'Cell_Phones_and_Accessories',
        'Clothing_Shoes_and_Jewelry', 'Electronics', 'Grocery_and_Gourmet_Food', 'Home_and_Kitchen',
        'Musical_Instruments', 'Office_Products', 'Patio_Lawn_and_Garden', 'Pet_Supplies',
        'Sports_and_Outdoors', 'Tools_and_Home_Improvement', 'Toys_and_Games', 'Video_Games'
    ])
    
    link_columns = ['also_buy', 'also_view']
    review_columns = [
        'reviewerID', 'summary', 'style', 'reviewText', 'vote', 'overall', 
        'verified', 'reviewTime'
    ]
    qa_columns = [
        'questionType', 'answerType', 'question', 'answer', 'answerTime'
    ]
    meta_columns = [
        'asin', 'title', 'global_category', 'category', 'price', 'brand', 
        'feature', 'rank', 'details', 'description'
    ]
    candidate_types = ['product']
    node_attr_dict = {
        'product': ['title', 'dimensions', 'weight', 'description', 'features', 'reviews', 'Q&A'],
        'brand': ['brand_name'],
        'category': ['category_name'],
        'color': ['color_name']
    }

    def __init__(self, 
                 root: Union[str, None] = None, 
                 categories: list = ['Sports_and_Outdoors'], 
                 meta_link_types: list = ['brand', 'category', 'color'],
                 max_entries: int = 25, 
                 download_processed: bool = True, 
                 **kwargs):
        """
        Initialize the AmazonSKB class.

        Args:
            root (Union[str, None]): Root directory to store the dataset. If None, default HF cache paths will be used.
            categories (list): Product categories.
            meta_link_types (list): A list of entries in node info that are used to construct meta links.
            max_entries (int): Maximum number of review & QA entries to show in the description.
            download_processed (bool): Whether to download the processed data.
        """
        self.root = root
        self.max_entries = max_entries

        if download_processed:
            if (self.root is None) or (
                self.root is not None
                and not osp.exists(osp.join(self.root, "category_list.json"))
            ):
                sub_category_path = osp.join(self.root, "category_list.json") if self.root is not None else None
                self.sub_category_path = download_hf_file(
                    DATASET["repo"],
                    DATASET["metadata"],
                    repo_type="dataset",
                    save_as_file=sub_category_path,
                )
        
            if (self.root is None) or (
                self.root is not None
                and meta_link_types is not None
                and not osp.exists(
                    osp.join(
                        self.root,
                        "processed",
                        "cache",
                        "-".join(meta_link_types),
                        "node_info.pkl",
                    )
                )
            ):
                processed_path = hf_hub_download(
                    DATASET["repo"], DATASET["processed"], repo_type="dataset"
                )
                if self.root is None:
                    self.root = osp.dirname(processed_path)
                if not osp.exists(
                    osp.join(
                        self.root,
                        "processed",
                        "cache",
                        "-".join(meta_link_types),
                        "node_info.pkl",
                    )):
                    with zipfile.ZipFile(processed_path, "r") as zip_ref:
                        zip_ref.extractall(path=self.root)
                    print(f"Extracting downloaded processed data to {self.root}")
                    

        self.raw_data_dir = osp.join(self.root, "raw")
        self.processed_data_dir = osp.join(osp.join(self.root, "processed"))
        os.makedirs(self.raw_data_dir, exist_ok=True)
        os.makedirs(self.processed_data_dir, exist_ok=True)

        cache_path = None if meta_link_types is None else osp.join(self.processed_data_dir, 'cache', '-'.join(meta_link_types))
        

        if cache_path is not None and osp.exists(cache_path):
            print(f"Loading from {self.processed_data_dir}!")
            print(f'Loading cached graph with meta link types {meta_link_types}')
            processed_data = load_files(cache_path)
        else:
            print('Start processing raw data...')
            print(f'{meta_link_types=}')
            processed_data = self._process_raw(categories)
            if meta_link_types:
                processed_data = self.post_process(processed_data, meta_link_types=meta_link_types, cache_path=cache_path)
        
        super(AmazonSKB, self).__init__(**processed_data, **kwargs)
    
    def __getitem__(self, idx: int) -> Node:
        """
        Get the node at the specified index.

        Args:
            idx (int): Index of the node.

        Returns:
            Node: The node at the specified index.
        """
        idx = int(idx)
        node_info = self.node_info[idx]
        node = Node()
        register_node(node, node_info)
        return node
        
    def get_chunk_info(self, idx: int, 
                       attribute: str) -> str:
        """
        Get chunk information for the specified attribute.

        Args:
            idx (int): Index of the node.
            attribute (str): Attribute to get chunk information for.

        Returns:
            str: Chunk information.
        """
        if not hasattr(self[idx], attribute):
            return ''
        node_attr = getattr(self[idx], attribute)
        
        if 'feature' in attribute:
            features = [feature for feature in node_attr if feature and 'asin' not in feature.lower()]
            chunk = ' '.join(features)
        
        elif 'review' in attribute:
            chunk = ''
            if node_attr:
                scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",", "")) for review in node_attr]
                ranks = np.argsort(-np.array(scores))
                for idx, review_idx in enumerate(ranks):
                    review = node_attr[review_idx]
                    chunk += f'The review "{review["summary"]}" states that "{review["reviewText"]}". '
                    if idx > self.max_entries:
                        break
        
        elif 'qa' in attribute:
            chunk = ''
            if node_attr:
                for idx, question in enumerate(node_attr):
                    chunk += f'The question is "{question["question"]}", and the answer is "{question["answer"]}". '
                    if idx > self.max_entries:
                        break
        
        elif 'description' in attribute and node_attr:
            chunk = " ".join(node_attr)
    
        else:
            chunk = node_attr
        return chunk 
    
    def get_doc_info(self, idx: int, 
                     add_rel: bool = False, 
                     compact: bool = False) -> str:
        """
        Get document information for the specified node.

        Args:
            idx (int): Index of the node.
            add_rel (bool): Whether to add relationship information.
            compact (bool): Whether to compact the text.

        Returns:
            str: Document information.
        """
        if self.node_type_dict[int(self.node_types[idx])] == 'brand':
            return f'brand name: {self[idx].brand_name}'
        if self.node_type_dict[int(self.node_types[idx])] == 'category':
            return f'category name: {self[idx].category_name}'
        if self.node_type_dict[int(self.node_types[idx])] == 'color':
            return f'color name: {self[idx].color_name}'
        
        node = self[idx]
        doc = f'- product: {node.title}\n'
        if hasattr(node, 'brand'):
            doc += f'- brand: {node.brand}\n'
        try:
            dimensions, weight = node.details.dictionary.product_dimensions.split(' ; ')
            doc += f'- dimensions: {dimensions}\n- weight: {weight}\n'
        except:
            pass
        if node.description:
            description = " ".join(node.description).strip(" ")
            if description:
                doc += f'- description: {description}\n'
        
        feature_text = '- features: \n'
        if node.feature:
            for feature_idx, feature in enumerate(node.feature):
                if feature and 'asin' not in feature.lower():
                    feature_text += f'#{feature_idx + 1}: {feature}\n'
        else:
            feature_text = ''
        
        if node.review:
            review_text = '- reviews: \n'
            scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",", "")) for review in node.review]
            ranks = np.argsort(-np.array(scores))
            for i, review_idx in enumerate(ranks):
                review = node.review[review_idx]
                review_text += f'#{review_idx + 1}:\nsummary: {review["summary"]}\ntext: "{review["reviewText"]}"\n'
                if i > self.max_entries:
                    break
        else:
            review_text = ''
        
        if node.qa:
            qa_text = '- Q&A: \n'
            for qa_idx, qa in enumerate(node.qa):
                qa_text += f'#{qa_idx + 1}:\nquestion: "{qa["question"]}"\nanswer: "{qa["answer"]}"\n'
                if qa_idx > self.max_entries:
                    break
        else:
            qa_text = ''
        
        doc += feature_text + review_text + qa_text
        
        if add_rel:
            doc += self.get_rel_info(idx)
        if compact:
            doc = compact_text(doc)
        return doc
    
    def get_rel_info(self, 
                     idx: int, 
                     rel_types: Union[list, None] = None,
                     n_rel: int = -1) -> str:
        """
        Get relation information for the specified node.

        Args:
            idx (int): Index of the node.
            rel_types (Union[list, None]): List of relation types or None if all relation types are included.
            n_rel (int): Number of relations. Default is -1 if all relations are included.

        Returns:
            doc (str): Relation information.
        """
        doc = ''
        rel_types = self.rel_type_lst() if rel_types is None else rel_types
        n_also_buy = self.get_neighbor_nodes(idx, 'also_buy')
        n_also_view = self.get_neighbor_nodes(idx, 'also_view')
        n_has_brand = self.get_neighbor_nodes(idx, 'has_brand')

        str_also_buy = [f"#{idx + 1}: " + self[i].title + '\n' for idx, i in enumerate(n_also_buy)]
        str_also_view = [f"#{idx + 1}: " + self[i].title + '\n' for idx, i in enumerate(n_also_view)]
        if n_rel > 0:
            str_also_buy = str_also_buy[:n_rel]
            str_also_view = str_also_view[:n_rel]
        
        if not str_also_buy:
            str_also_buy = ''
        if not str_also_view:
            str_also_view = ''
        str_has_brand = ''
        if n_has_brand:
            str_has_brand = f'  brand: {self[n_has_brand[0]].brand_name}\n'
            
        str_also_buy = ''.join(str_also_buy)
        str_also_view = ''.join(str_also_view)

        if str_also_buy:
            doc += f'  products also purchased: \n{str_also_buy}'
        if str_also_view:
            doc += f'  products also viewed: \n{str_also_view}'
        if n_has_brand:
            doc += str_has_brand
            
        if doc:
            doc = '- relations:\n' + doc
        return doc
    
    def _process_raw(self, categories: list) -> dict:
        """
        Process raw data to construct the knowledge base.

        Args:
            categories (list): List of categories to process.

        Returns:
            dict: Processed data.
        """
        if 'all' in categories:
            review_categories = self.REVIEW_CATEGORIES
            qa_categories = self.QA_CATEGORIES
        else:
            qa_categories = review_categories = categories
            assert not set(categories) - self.COMMON, 'invalid categories exist'
        
        if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
            print(f'Load processed data from {self.processed_data_dir}')
            loaded_files = load_files(self.processed_data_dir)
            loaded_files.update({
                'node_types': torch.zeros(len(loaded_files['node_info'])),
                'node_type_dict': {0: 'product'}
            })
            return loaded_files
        
        print('Check data downloading...')
        for category in review_categories:
            review_header = RAW_DATA_HEADER['review_header']
            if not os.path.exists(osp.join(self.raw_data_dir, f'{category}.json.gz')):
                print(f'Downloading {category} data...')
                download_url(f'{review_header}/categoryFiles/{category}.json.gz', self.raw_data_dir)
                download_url(f'{review_header}/metaFiles2/meta_{category}.json.gz', self.raw_data_dir)
        for category in qa_categories:
            qa_header = RAW_DATA_HEADER['qa_header']
            if not os.path.exists(osp.join(self.raw_data_dir, f'qa_{category}.json.gz')):
                print(f'Downloading {category} QA data...')
                download_url(f'{qa_header}/qa_{category}.json.gz', self.raw_data_dir)
            
        if not osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
            ckt_path = osp.join(self.root, 'intermediate')
            os.makedirs(ckt_path, exist_ok=True)
            print('Loading data... It might take a while')
            
            df_qa_path = os.path.join(ckt_path, 'df_qa.pkl')
            if os.path.exists(df_qa_path):
                df_qa = pd.read_pickle(df_qa_path)
            else:
                df_qa = pd.concat([
                    read_qa(osp.join(self.raw_data_dir, f'qa_{category}.json.gz'))
                    for category in qa_categories
                ])[['asin'] + self.qa_columns]
                df_qa.to_pickle(df_qa_path)
            print('df_qa loaded')
            
            df_review_path = os.path.join(ckt_path, 'df_review.pkl')
            if os.path.exists(df_review_path):
                df_review = pd.read_pickle(df_review_path)
            else:
                df_review = pd.concat([
                    read_review(osp.join(self.raw_data_dir, f'{category}.json.gz')) 
                    for category in review_categories
                ])[['asin'] + self.review_columns]
                df_review.to_pickle(df_review_path)
            print('df_review loaded')
            
            df_ucsd_meta_path = os.path.join(ckt_path, 'df_ucsd_meta.pkl')
            if os.path.exists(df_ucsd_meta_path):
                df_ucsd_meta = pd.read_pickle(df_ucsd_meta_path)
            else:
                meta_df_lst = []
                for category in review_categories:
                    cat_review = read_review(osp.join(self.raw_data_dir, f'meta_{category}.json.gz'))
                    cat_review.insert(0, 'global_category', category.replace('_', ' '))
                    meta_df_lst.append(cat_review)
                df_ucsd_meta = pd.concat(meta_df_lst)
                df_ucsd_meta.to_pickle(df_ucsd_meta_path)
            print('df_ucsd_meta loaded')
            
            print('Preprocessing data...')
            df_ucsd_meta = df_ucsd_meta.drop_duplicates(subset='asin', keep='first')
            df_meta = df_ucsd_meta[self.meta_columns + self.link_columns]
            
            df_review_meta = df_review.merge(df_meta, left_on='asin', right_on='asin')
            unique_asin = np.unique(np.array(df_review_meta['asin']))
            
            df_qa_reduced = df_qa[df_qa['asin'].isin(unique_asin)]
            df_review_reduced = df_review[df_review['asin'].isin(unique_asin)]
            df_meta_reduced = df_meta[df_meta['asin'].isin(unique_asin)].reset_index()
            
            def get_map(df):
                asin2id, id2asin = {}, {}
                for idx in range(len(df)):
                    asin2id[df['asin'][idx]] = idx
                    id2asin[idx] = df['asin'][idx]
                return asin2id, id2asin

            print('Construct node info and graph...')
            self.asin2id, self.id2asin = get_map(df_meta_reduced)
            node_info = self.construct_raw_node_info(df_meta_reduced, df_review_reduced, df_qa_reduced)
            edge_index, edge_types = self.create_raw_product_graph(df_meta_reduced, columns=self.link_columns)
            edge_type_dict = {0: 'also_buy', 1: 'also_view'}
            processed_data = {
                'node_info': node_info, 
                'edge_index': edge_index, 
                'edge_types': edge_types,
                'edge_type_dict': edge_type_dict
            }
            
            print(f'Saving to {self.processed_data_dir}...')
            save_files(save_path=self.processed_data_dir, **processed_data)

        processed_data.update({
            'node_types': torch.zeros(len(processed_data['node_info'])),
            'node_type_dict': {0: 'product'}
        })
        return processed_data
    
    def post_process(self, raw_info: dict, meta_link_types: list, cache_path: str = None) -> dict:
        """
        Post-process the raw information to add meta link types.

        Args:
            raw_info (dict): Raw information.
            meta_link_types (list): List of meta link types to add.
            cache_path (str): Path to cache the processed data.

        Returns:
            dict: Post-processed data.
        """
        print(f'Adding meta link types {meta_link_types}')
        node_info = raw_info['node_info']
        edge_type_dict = raw_info['edge_type_dict']
        node_type_dict = raw_info['node_type_dict']
        node_types = raw_info['node_types'].tolist()
        edge_index = raw_info['edge_index'].tolist()
        edge_types = raw_info['edge_types'].tolist()
        
        n_e_types, n_n_types = len(edge_type_dict), len(node_type_dict)
        for i, link_type in enumerate(meta_link_types):
            if link_type == 'brand':
                values = np.array([node_info_i[link_type] for node_info_i in node_info.values() 
                                   if link_type in node_info_i.keys()])
                indices = np.array([idx for idx, node_info_i in enumerate(node_info.values()) 
                                    if link_type in node_info_i.keys()])
            elif link_type in ['category', 'color']:
                value_list, indice_list = [], []
                for idx, node_info_i in enumerate(node_info.values()):
                    if link_type in node_info_i.keys():
                        value_list.extend(node_info_i[link_type])
                        indice_list.extend([idx for _ in range(len(node_info_i[link_type]))])
                values, indices = np.array(value_list), np.array(indice_list)
            else:
                raise Exception(f'Invalid meta link type {link_type}')
            
            cur_n_nodes = len(node_info)
            node_type_dict[n_n_types + i] = link_type
            edge_type_dict[n_e_types + i] = "has_" + link_type
            unique = np.unique(values)
            for j, unique_j in tqdm(enumerate(unique)):
                node_info[cur_n_nodes + j] = {link_type + '_name': unique_j}
                ids = indices[np.array(values == unique_j)]
                edge_index[0].extend(ids.tolist())
                edge_index[1].extend([cur_n_nodes + j for _ in range(len(ids))])
                edge_types.extend([i + n_e_types for _ in range(len(ids))])
            node_types.extend([n_n_types + i for _ in range(len(unique))])
            print(f'finished adding {link_type}')
            
        edge_index = torch.LongTensor(edge_index)
        edge_types = torch.LongTensor(edge_types)
        node_types = torch.LongTensor(node_types)
        files = {
            'node_info': node_info, 
            'edge_index': edge_index, 
            'edge_types': edge_types, 
            'edge_type_dict': edge_type_dict,
            'node_type_dict': node_type_dict,
            'node_types': node_types
        }
        if cache_path is not None:
            save_files(cache_path, **files)
        return files
    
    def _process_brand(self, brand: str) -> str:
        """
        Process brand names to remove unnecessary characters.

        Args:
            brand (str): Brand name.

        Returns:
            str: Processed brand name.
        """
        brand = brand.strip(" \".*+,-_!@#$%^&*();\/|<>\'\t\n\r\\")
        if brand.startswith('by '):
            brand = brand[3:]
        if brand.endswith('.com'):
            brand = brand[:-4]
        if brand.startswith('www.'):
            brand = brand[4:]
        if len(brand) > 100:
            brand = brand.split(' ')[0]
        return brand
    
    def construct_raw_node_info(self, df_meta: pd.DataFrame, df_review: pd.DataFrame, df_qa: pd.DataFrame) -> dict:
        """
        Construct raw node information.

        Args:
            df_meta (pd.DataFrame): DataFrame containing meta information.
            df_review (pd.DataFrame): DataFrame containing review information.
            df_qa (pd.DataFrame): DataFrame containing QA information.

        Returns:
            dict: Dictionary containing node information.
        """
        node_info = {idx: {'review': [], 'qa': []} for idx in range(len(df_meta))}
        
        ###################### Assign color ########################
        def assign_colors(df_review, lower_limit=20):
            # asign to color
            df_review = df_review[['asin', 'style']]
            df_review = df_review.dropna(subset=['style'])
            raw_color_dict = {}
            for idx, row in tqdm(df_review.iterrows()):
                asin, style = row['asin'], row['style']
                for key in style.keys():
                    if 'color' in key.lower():
                        try:
                            raw_color_dict[asin] 
                        except:
                            raw_color_dict[asin] = []
                        raw_color_dict[asin].append(
                            style[key].strip().lower() if isinstance(style[key], str) else style[key][0].strip())
            
            all_color_values = []
            for asin in raw_color_dict.keys():
                raw_color_dict[asin] = list(set(raw_color_dict[asin]))
                all_color_values.extend(raw_color_dict[asin])
            
            print('number of all colors', len(all_color_values))
            color_counter = Counter(all_color_values)
            print('number of unique colors', len(color_counter))
            color_counter = {k: v for k, v in sorted(color_counter.items(), key=lambda item: item[1], reverse=True)}
            selected_colors = []
            for color, number in color_counter.items():
                if number > lower_limit and len(color) > 2 and len(color.split(' ')) < 5 and color.isnumeric() is False:
                    selected_colors.append(color)
            print('number of selected colors', len(selected_colors))
            
            filtered_color_dict = {}
            total_color_connections = 0
            for asin in raw_color_dict.keys():
                filtered_color_dict[asin] = []
                for value in raw_color_dict[asin]:
                    if value in selected_colors:
                        filtered_color_dict[asin].append(value)
                total_color_connections += len(filtered_color_dict[asin])
            print('number of linked products', len(filtered_color_dict))
            print('number of total connections', total_color_connections)
            return filtered_color_dict
    
        filtered_color_dict_path = os.path.join(self.root, 'intermediate', 'filtered_color_dict.pkl')
        if os.path.exists(filtered_color_dict_path):
            with open(filtered_color_dict_path, 'rb') as f:
                filtered_color_dict = pickle.load(f)
        else:
            filtered_color_dict = assign_colors(df_review)
            with open(filtered_color_dict_path, 'wb') as f:
                pickle.dump(filtered_color_dict, f)
        
        for df_meta_i in tqdm(df_meta.itertuples()):
            asin = df_meta_i.asin
            idx = self.asin2id[asin]
            if asin in filtered_color_dict and filtered_color_dict[asin]:
                node_info[idx]['color'] = filtered_color_dict[asin]
        
        ###################### Assign brand and category ########################
        sub_categories = set(json.load(open(self.sub_category_path, 'r')))
        for df_meta_i in tqdm(df_meta.itertuples()):
            asin = df_meta_i.asin
            idx = self.asin2id[asin]
            for column in self.meta_columns:
                if column == 'brand':
                    brand = self._process_brand(clean_data(getattr(df_meta_i, column)))
                    if brand:
                        node_info[idx]['brand'] = brand
                elif column == 'category':
                    category_list = [
                        category.lower() for category in getattr(df_meta_i, column)
                        if category.lower() in sub_categories
                    ]
                    if category_list:
                        node_info[idx]['category'] = category_list
                else:
                    node_info[idx][column] = clean_data(getattr(df_meta_i, column))
        
        ###################### Process review and QA ########################
        for name, df, colunm_names in zip(['review', 'qa'], 
                                          [df_review, df_qa], 
                                          [self.review_columns, self.qa_columns]):
            for i in tqdm(range(len(df))):
                df_i = df.iloc[i]
                asin = df_i['asin']
                idx = self.asin2id[asin]
                node_info[idx][name].append(df_row_to_dict(df_i, colunm_names))
        
        return node_info

    def create_raw_product_graph(self, df: pd.DataFrame, columns: list) -> tuple:
        """
        Create raw product graph.

        Args:
            df (pd.DataFrame): DataFrame containing meta information.
            columns (list): List of columns to create edges.

        Returns:
            tuple: Tuple containing edge index and edge types.
        """
        edge_types = []
        edge_index = [[], []]
        for df_i in df.itertuples():
            out_node = self.asin2id[df_i.asin]
            for edge_type_id, edge_type in enumerate(columns):
                if isinstance(getattr(df_i, edge_type), list):
                    in_nodes = [self.asin2id[i] for i in getattr(df_i, edge_type) if i in self.asin2id]
                    edge_types.extend([edge_type_id] * len(in_nodes))
                    edge_index[0].extend([out_node] * len(in_nodes))
                    edge_index[1].extend(in_nodes)
        return torch.LongTensor(edge_index), torch.LongTensor(edge_types)

    def has_brand(self, idx: int, brand: str) -> bool:
        """
        Check if the node has the specified brand.

        Args:
            idx (int): Index of the node.
            brand (str): Brand name.

        Returns:
            bool: Whether the node has the specified brand.
        """
        try: 
            b = self[idx].brand
            if b.endswith('.com'):
                b = b[:-4]
            if brand.endswith('.com'):
                brand = brand[:-4]
            return b.lower().strip("\"") == brand.lower().strip("\"")
        except:
            return False

    def has_also_buy(self, idx: int, also_buy_item: int) -> bool:
        """
        Check if the node has the specified also_buy item.

        Args:
            idx (int): Index of the node.
            also_buy_item (int): Item to check.

        Returns:
            bool: Whether the node has the specified also_buy item.
        """
        try: 
            also_buy_lst = self.get_neighbor_nodes(idx, 'also_buy') 
            return also_buy_item in also_buy_lst
        except:
            return False
        
    def has_also_view(self, idx: int, also_view_item: int) -> bool:
        """
        Check if the node has the specified also_view item.

        Args:
            idx (int): Index of the node.
            also_view_item (int): Item to check.

        Returns:
            bool: Whether the node has the specified also_view item.
        """
        try: 
            also_view_lst = self.get_neighbor_nodes(idx, 'also_view') 
            return also_view_item in also_view_lst
        except:
            return False


def read_review(path: str) -> pd.DataFrame:
    """
    Read and parse review files.

    Args:
        path (str): Path to the review file.

    Returns:
        pd.DataFrame: DataFrame containing the reviews.
    """
    def parse(path: str):
        with gzip.open(path, 'rb') as g:
            for l in g:
                yield json.loads(l)

    def getDF(path: str) -> pd.DataFrame:
        df = {}
        for i, d in enumerate(parse(path)):
            df[i] = d
        return pd.DataFrame.from_dict(df, orient='index')

    return getDF(path)


def read_qa(path: str) -> pd.DataFrame:
    """
    Read and parse QA files.

    Args:
        path (str): Path to the QA file.

    Returns:
        pd.DataFrame: DataFrame containing the QA data.
    """
    def parse(path: str):
        with gzip.open(path, 'rb') as g:
            for l in g:
                yield eval(l)

    def getDF(path: str) -> pd.DataFrame:
        df = {}
        for i, d in enumerate(parse(path)):
            df[i] = d
        return pd.DataFrame.from_dict(df, orient='index')

    return getDF(path)