File size: 2,508 Bytes
c7c2035
 
a472be8
 
 
c7c2035
 
 
a472be8
c7c2035
 
 
 
 
 
 
 
 
 
 
 
 
a472be8
c7c2035
a472be8
c7c2035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- GaetanMichelet/chat-60_ft_task-3_auto
- GaetanMichelet/chat-120_ft_task-3_auto
library_name: peft
license: apache-2.0
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Mistral-7B_task-3_120-samples_config-2_full_auto
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B_task-3_120-samples_config-2_full_auto

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.3) on the GaetanMichelet/chat-60_ft_task-3_auto and the GaetanMichelet/chat-120_ft_task-3_auto datasets.
It achieves the following results on the evaluation set:
- Loss: 0.8521

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.246         | 0.9091  | 5    | 1.1940          |
| 1.1422        | 2.0     | 11   | 1.0793          |
| 1.0294        | 2.9091  | 16   | 1.0066          |
| 0.8899        | 4.0     | 22   | 0.9020          |
| 0.8298        | 4.9091  | 27   | 0.8737          |
| 0.7997        | 6.0     | 33   | 0.8607          |
| 0.7828        | 6.9091  | 38   | 0.8527          |
| 0.7537        | 8.0     | 44   | 0.8521          |
| 0.701         | 8.9091  | 49   | 0.8577          |
| 0.6948        | 10.0    | 55   | 0.8667          |
| 0.622         | 10.9091 | 60   | 0.8851          |
| 0.542         | 12.0    | 66   | 0.9304          |
| 0.4829        | 12.9091 | 71   | 0.9685          |
| 0.4214        | 14.0    | 77   | 1.0037          |
| 0.314         | 14.9091 | 82   | 1.0333          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1