File size: 2,903 Bytes
d0cf99b bb23ca6 d0cf99b bb23ca6 d0cf99b bb23ca6 d0cf99b bb23ca6 d0cf99b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-3_auto
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-3_60-samples_config-2_full_auto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-31-8B_task-3_60-samples_config-2_full_auto
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-3_auto dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1526
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.6601 | 0.6957 | 2 | 1.6697 |
| 1.6649 | 1.7391 | 5 | 1.6260 |
| 1.591 | 2.7826 | 8 | 1.5468 |
| 1.4992 | 3.8261 | 11 | 1.4664 |
| 1.4061 | 4.8696 | 14 | 1.3963 |
| 1.352 | 5.9130 | 17 | 1.3313 |
| 1.2367 | 6.9565 | 20 | 1.2646 |
| 1.2127 | 8.0 | 23 | 1.2216 |
| 1.1571 | 8.6957 | 25 | 1.2052 |
| 1.1165 | 9.7391 | 28 | 1.1900 |
| 1.124 | 10.7826 | 31 | 1.1787 |
| 1.0947 | 11.8261 | 34 | 1.1694 |
| 1.0606 | 12.8696 | 37 | 1.1634 |
| 1.0621 | 13.9130 | 40 | 1.1573 |
| 1.0235 | 14.9565 | 43 | 1.1550 |
| 1.0274 | 16.0 | 46 | 1.1531 |
| 0.9827 | 16.6957 | 48 | 1.1526 |
| 0.9959 | 17.7391 | 51 | 1.1536 |
| 0.9813 | 18.7826 | 54 | 1.1576 |
| 0.9571 | 19.8261 | 57 | 1.1600 |
| 0.9413 | 20.8696 | 60 | 1.1619 |
| 0.9355 | 21.9130 | 63 | 1.1652 |
| 0.9063 | 22.9565 | 66 | 1.1698 |
| 0.8949 | 24.0 | 69 | 1.1736 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |