File size: 3,559 Bytes
c8bc8c4
 
03e4ed0
 
 
 
c8bc8c4
 
 
03e4ed0
c8bc8c4
 
 
 
 
 
 
 
 
 
 
 
 
03e4ed0
c8bc8c4
03e4ed0
c8bc8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-3
- GaetanMichelet/chat-120_ft_task-3
- GaetanMichelet/chat-180_ft_task-3
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-3_180-samples_config-4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-3_180-samples_config-4

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-3, the GaetanMichelet/chat-120_ft_task-3 and the GaetanMichelet/chat-180_ft_task-3 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4942

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.5495        | 0.9412  | 8    | 2.5077          |
| 2.3733        | 2.0     | 17   | 2.4775          |
| 2.46          | 2.9412  | 25   | 2.4218          |
| 2.4585        | 4.0     | 34   | 2.3278          |
| 2.2624        | 4.9412  | 42   | 2.1919          |
| 2.0553        | 6.0     | 51   | 1.9704          |
| 1.7403        | 6.9412  | 59   | 1.7066          |
| 1.3756        | 8.0     | 68   | 1.3617          |
| 1.11          | 8.9412  | 76   | 1.0613          |
| 0.7161        | 10.0    | 85   | 0.7772          |
| 0.7609        | 10.9412 | 93   | 0.6787          |
| 0.4358        | 12.0    | 102  | 0.6182          |
| 0.4774        | 12.9412 | 110  | 0.5912          |
| 0.5569        | 14.0    | 119  | 0.5746          |
| 0.427         | 14.9412 | 127  | 0.5487          |
| 0.4672        | 16.0    | 136  | 0.5339          |
| 0.3495        | 16.9412 | 144  | 0.5525          |
| 0.4731        | 18.0    | 153  | 0.5323          |
| 0.3913        | 18.9412 | 161  | 0.5243          |
| 0.5624        | 20.0    | 170  | 0.5253          |
| 0.4684        | 20.9412 | 178  | 0.5222          |
| 0.3029        | 22.0    | 187  | 0.5100          |
| 0.3522        | 22.9412 | 195  | 0.5085          |
| 0.3855        | 24.0    | 204  | 0.4971          |
| 0.317         | 24.9412 | 212  | 0.5049          |
| 0.338         | 26.0    | 221  | 0.5016          |
| 0.391         | 26.9412 | 229  | 0.4942          |
| 0.3964        | 28.0    | 238  | 0.5010          |
| 0.2951        | 28.9412 | 246  | 0.5098          |
| 0.4021        | 30.0    | 255  | 0.5068          |
| 0.4021        | 30.9412 | 263  | 0.5070          |
| 0.3456        | 32.0    | 272  | 0.5025          |
| 0.4431        | 32.9412 | 280  | 0.5050          |
| 0.4131        | 34.0    | 289  | 0.5094          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1