File size: 2,314 Bytes
3ffe77c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-3_180-samples_config-2_auto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-31-8B_task-3_180-samples_config-2_auto
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5974
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.1694 | 0.9412 | 8 | 2.0003 |
| 1.1443 | 2.0 | 17 | 0.8652 |
| 0.5201 | 2.9412 | 25 | 0.4725 |
| 0.2979 | 4.0 | 34 | 0.3815 |
| 0.3128 | 4.9412 | 42 | 0.3738 |
| 0.3107 | 6.0 | 51 | 0.3410 |
| 0.2488 | 6.9412 | 59 | 0.3388 |
| 0.252 | 8.0 | 68 | 0.3387 |
| 0.2324 | 8.9412 | 76 | 0.3474 |
| 0.1655 | 10.0 | 85 | 0.3932 |
| 0.1782 | 10.9412 | 93 | 0.4127 |
| 0.0536 | 12.0 | 102 | 0.4492 |
| 0.0425 | 12.9412 | 110 | 0.5433 |
| 0.0347 | 14.0 | 119 | 0.6090 |
| 0.0231 | 14.9412 | 127 | 0.5974 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |