File size: 4,524 Bytes
eafe8b7
 
bc1938d
 
eafe8b7
 
 
bc1938d
eafe8b7
 
 
 
 
 
 
 
 
 
 
 
 
bc1938d
eafe8b7
bc1938d
eafe8b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_60-samples_config-3_full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-2_60-samples_config-3_full

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0710

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.5659        | 0.8696  | 5    | 1.5846          |
| 1.5947        | 1.9130  | 11   | 1.5811          |
| 1.6305        | 2.9565  | 17   | 1.5758          |
| 1.5682        | 4.0     | 23   | 1.5673          |
| 1.5687        | 4.8696  | 28   | 1.5571          |
| 1.5556        | 5.9130  | 34   | 1.5406          |
| 1.4699        | 6.9565  | 40   | 1.5190          |
| 1.5027        | 8.0     | 46   | 1.4958          |
| 1.5203        | 8.8696  | 51   | 1.4719          |
| 1.4872        | 9.9130  | 57   | 1.4445          |
| 1.4184        | 10.9565 | 63   | 1.4151          |
| 1.3817        | 12.0    | 69   | 1.3868          |
| 1.3397        | 12.8696 | 74   | 1.3648          |
| 1.3234        | 13.9130 | 80   | 1.3390          |
| 1.2893        | 14.9565 | 86   | 1.3122          |
| 1.2999        | 16.0    | 92   | 1.2852          |
| 1.2212        | 16.8696 | 97   | 1.2628          |
| 1.234         | 17.9130 | 103  | 1.2358          |
| 1.1704        | 18.9565 | 109  | 1.2078          |
| 1.1499        | 20.0    | 115  | 1.1796          |
| 1.1265        | 20.8696 | 120  | 1.1570          |
| 1.0716        | 21.9130 | 126  | 1.1357          |
| 1.0332        | 22.9565 | 132  | 1.1223          |
| 1.0631        | 24.0    | 138  | 1.1155          |
| 1.0659        | 24.8696 | 143  | 1.1111          |
| 1.0637        | 25.9130 | 149  | 1.1068          |
| 0.9979        | 26.9565 | 155  | 1.1031          |
| 1.0495        | 28.0    | 161  | 1.0993          |
| 1.0126        | 28.8696 | 166  | 1.0966          |
| 0.9884        | 29.9130 | 172  | 1.0938          |
| 1.0366        | 30.9565 | 178  | 1.0909          |
| 1.0434        | 32.0    | 184  | 1.0886          |
| 1.0222        | 32.8696 | 189  | 1.0862          |
| 0.9978        | 33.9130 | 195  | 1.0842          |
| 0.9593        | 34.9565 | 201  | 1.0824          |
| 1.0383        | 36.0    | 207  | 1.0804          |
| 0.9958        | 36.8696 | 212  | 1.0792          |
| 0.9774        | 37.9130 | 218  | 1.0778          |
| 0.9853        | 38.9565 | 224  | 1.0763          |
| 0.9241        | 40.0    | 230  | 1.0747          |
| 1.0387        | 40.8696 | 235  | 1.0743          |
| 0.9616        | 41.9130 | 241  | 1.0733          |
| 0.9909        | 42.9565 | 247  | 1.0724          |
| 0.9055        | 44.0    | 253  | 1.0720          |
| 1.0025        | 44.8696 | 258  | 1.0722          |
| 0.9325        | 45.9130 | 264  | 1.0711          |
| 0.8921        | 46.9565 | 270  | 1.0723          |
| 0.9079        | 48.0    | 276  | 1.0710          |
| 0.9615        | 48.8696 | 281  | 1.0729          |
| 0.9517        | 49.9130 | 287  | 1.0718          |
| 0.8619        | 50.9565 | 293  | 1.0730          |
| 0.8894        | 52.0    | 299  | 1.0739          |
| 0.8389        | 52.8696 | 304  | 1.0742          |
| 0.9032        | 53.9130 | 310  | 1.0750          |
| 0.9015        | 54.9565 | 316  | 1.0760          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1