File size: 2,668 Bytes
90f13ae 38c4d54 90f13ae 38c4d54 90f13ae 38c4d54 90f13ae 38c4d54 90f13ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2
- GaetanMichelet/chat-120_ft_task-2
- GaetanMichelet/chat-180_ft_task-2
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_180-samples_config-2_full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-31-8B_task-2_180-samples_config-2_full
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2, the GaetanMichelet/chat-120_ft_task-2 and the GaetanMichelet/chat-180_ft_task-2 datasets.
It achieves the following results on the evaluation set:
- Loss: 1.0352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.5563 | 0.9412 | 8 | 1.5577 |
| 1.4499 | 2.0 | 17 | 1.4147 |
| 1.3435 | 2.9412 | 25 | 1.2968 |
| 1.0893 | 4.0 | 34 | 1.1421 |
| 1.0304 | 4.9412 | 42 | 1.0948 |
| 1.0336 | 6.0 | 51 | 1.0725 |
| 1.0393 | 6.9412 | 59 | 1.0579 |
| 0.9727 | 8.0 | 68 | 1.0467 |
| 0.9068 | 8.9412 | 76 | 1.0394 |
| 0.9015 | 10.0 | 85 | 1.0352 |
| 0.8647 | 10.9412 | 93 | 1.0374 |
| 0.798 | 12.0 | 102 | 1.0530 |
| 0.795 | 12.9412 | 110 | 1.0667 |
| 0.7562 | 14.0 | 119 | 1.0935 |
| 0.6454 | 14.9412 | 127 | 1.1196 |
| 0.5665 | 16.0 | 136 | 1.1875 |
| 0.565 | 16.9412 | 144 | 1.2294 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |