File size: 3,855 Bytes
fa3758e
 
834f8f8
 
 
fa3758e
 
 
834f8f8
fa3758e
 
 
 
 
 
 
 
 
 
 
 
 
834f8f8
fa3758e
834f8f8
fa3758e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2
- GaetanMichelet/chat-120_ft_task-2
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_120-samples_config-4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-2_120-samples_config-4

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2 and the GaetanMichelet/chat-120_ft_task-2 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.7144

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.1544        | 0.9091  | 5    | 1.1237          |
| 1.132         | 2.0     | 11   | 1.1193          |
| 1.0689        | 2.9091  | 16   | 1.1136          |
| 1.0956        | 4.0     | 22   | 1.1011          |
| 1.1157        | 4.9091  | 27   | 1.0871          |
| 1.0778        | 6.0     | 33   | 1.0639          |
| 1.0458        | 6.9091  | 38   | 1.0393          |
| 0.9854        | 8.0     | 44   | 1.0027          |
| 0.9996        | 8.9091  | 49   | 0.9696          |
| 0.8991        | 10.0    | 55   | 0.9317          |
| 0.8897        | 10.9091 | 60   | 0.9052          |
| 0.8711        | 12.0    | 66   | 0.8788          |
| 0.8809        | 12.9091 | 71   | 0.8588          |
| 0.7972        | 14.0    | 77   | 0.8368          |
| 0.8156        | 14.9091 | 82   | 0.8208          |
| 0.7815        | 16.0    | 88   | 0.8057          |
| 0.7492        | 16.9091 | 93   | 0.7956          |
| 0.7587        | 18.0    | 99   | 0.7855          |
| 0.7483        | 18.9091 | 104  | 0.7780          |
| 0.7296        | 20.0    | 110  | 0.7695          |
| 0.7441        | 20.9091 | 115  | 0.7629          |
| 0.7176        | 22.0    | 121  | 0.7561          |
| 0.7033        | 22.9091 | 126  | 0.7508          |
| 0.6906        | 24.0    | 132  | 0.7443          |
| 0.6954        | 24.9091 | 137  | 0.7396          |
| 0.6578        | 26.0    | 143  | 0.7344          |
| 0.6495        | 26.9091 | 148  | 0.7310          |
| 0.6391        | 28.0    | 154  | 0.7269          |
| 0.6442        | 28.9091 | 159  | 0.7237          |
| 0.6268        | 30.0    | 165  | 0.7199          |
| 0.6536        | 30.9091 | 170  | 0.7183          |
| 0.6092        | 32.0    | 176  | 0.7163          |
| 0.621         | 32.9091 | 181  | 0.7149          |
| 0.5823        | 34.0    | 187  | 0.7144          |
| 0.5651        | 34.9091 | 192  | 0.7156          |
| 0.5951        | 36.0    | 198  | 0.7164          |
| 0.5637        | 36.9091 | 203  | 0.7195          |
| 0.5669        | 38.0    | 209  | 0.7219          |
| 0.5613        | 38.9091 | 214  | 0.7278          |
| 0.5156        | 40.0    | 220  | 0.7309          |
| 0.5044        | 40.9091 | 225  | 0.7395          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1