File size: 2,695 Bytes
defacaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_60-samples_config-2_full_auto
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-1_60-samples_config-2_full_auto

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9046

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.2096        | 0.6957  | 2    | 2.1129          |
| 2.167         | 1.7391  | 5    | 1.9558          |
| 1.8726        | 2.7826  | 8    | 1.7428          |
| 1.7678        | 3.8261  | 11   | 1.5017          |
| 1.3895        | 4.8696  | 14   | 1.2525          |
| 1.234         | 5.9130  | 17   | 1.0325          |
| 0.9378        | 6.9565  | 20   | 0.9271          |
| 0.8782        | 8.0     | 23   | 0.8920          |
| 0.8394        | 8.6957  | 25   | 0.8784          |
| 0.7845        | 9.7391  | 28   | 0.8647          |
| 0.7863        | 10.7826 | 31   | 0.8503          |
| 0.7261        | 11.8261 | 34   | 0.8417          |
| 0.7333        | 12.8696 | 37   | 0.8337          |
| 0.6709        | 13.9130 | 40   | 0.8289          |
| 0.6612        | 14.9565 | 43   | 0.8270          |
| 0.6253        | 16.0    | 46   | 0.8289          |
| 0.6012        | 16.6957 | 48   | 0.8323          |
| 0.5792        | 17.7391 | 51   | 0.8385          |
| 0.5162        | 18.7826 | 54   | 0.8561          |
| 0.5219        | 19.8261 | 57   | 0.8603          |
| 0.445         | 20.8696 | 60   | 0.8802          |
| 0.4396        | 21.9130 | 63   | 0.9046          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1