--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: Llama-31-8B_task-1_180-samples_config-4 results: [] --- # Llama-31-8B_task-1_180-samples_config-4 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.0972 | 0.9412 | 8 | 2.0718 | | 2.0234 | 2.0 | 17 | 2.0545 | | 2.0324 | 2.9412 | 25 | 2.0288 | | 2.0064 | 4.0 | 34 | 1.9798 | | 1.9611 | 4.9412 | 42 | 1.9139 | | 1.8283 | 6.0 | 51 | 1.8090 | | 1.6817 | 6.9412 | 59 | 1.7011 | | 1.5762 | 8.0 | 68 | 1.6085 | | 1.5529 | 8.9412 | 76 | 1.5659 | | 1.4817 | 10.0 | 85 | 1.5206 | | 1.5125 | 10.9412 | 93 | 1.4816 | | 1.3226 | 12.0 | 102 | 1.4352 | | 1.3823 | 12.9412 | 110 | 1.3951 | | 1.2564 | 14.0 | 119 | 1.3580 | | 1.1936 | 14.9412 | 127 | 1.3305 | | 1.2322 | 16.0 | 136 | 1.3061 | | 1.1389 | 16.9412 | 144 | 1.2910 | | 1.2119 | 18.0 | 153 | 1.2775 | | 1.0796 | 18.9412 | 161 | 1.2672 | | 1.088 | 20.0 | 170 | 1.2627 | | 1.0344 | 20.9412 | 178 | 1.2631 | | 1.0175 | 22.0 | 187 | 1.2589 | | 0.9509 | 22.9412 | 195 | 1.2707 | | 0.8574 | 24.0 | 204 | 1.2784 | | 0.8673 | 24.9412 | 212 | 1.2985 | | 0.8657 | 26.0 | 221 | 1.3300 | | 0.7453 | 26.9412 | 229 | 1.3725 | | 0.7771 | 28.0 | 238 | 1.3823 | | 0.6941 | 28.9412 | 246 | 1.4508 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1