File size: 3,046 Bytes
88bba23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_180-samples_config-4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-1_180-samples_config-4

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4508

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.0972        | 0.9412  | 8    | 2.0718          |
| 2.0234        | 2.0     | 17   | 2.0545          |
| 2.0324        | 2.9412  | 25   | 2.0288          |
| 2.0064        | 4.0     | 34   | 1.9798          |
| 1.9611        | 4.9412  | 42   | 1.9139          |
| 1.8283        | 6.0     | 51   | 1.8090          |
| 1.6817        | 6.9412  | 59   | 1.7011          |
| 1.5762        | 8.0     | 68   | 1.6085          |
| 1.5529        | 8.9412  | 76   | 1.5659          |
| 1.4817        | 10.0    | 85   | 1.5206          |
| 1.5125        | 10.9412 | 93   | 1.4816          |
| 1.3226        | 12.0    | 102  | 1.4352          |
| 1.3823        | 12.9412 | 110  | 1.3951          |
| 1.2564        | 14.0    | 119  | 1.3580          |
| 1.1936        | 14.9412 | 127  | 1.3305          |
| 1.2322        | 16.0    | 136  | 1.3061          |
| 1.1389        | 16.9412 | 144  | 1.2910          |
| 1.2119        | 18.0    | 153  | 1.2775          |
| 1.0796        | 18.9412 | 161  | 1.2672          |
| 1.088         | 20.0    | 170  | 1.2627          |
| 1.0344        | 20.9412 | 178  | 1.2631          |
| 1.0175        | 22.0    | 187  | 1.2589          |
| 0.9509        | 22.9412 | 195  | 1.2707          |
| 0.8574        | 24.0    | 204  | 1.2784          |
| 0.8673        | 24.9412 | 212  | 1.2985          |
| 0.8657        | 26.0    | 221  | 1.3300          |
| 0.7453        | 26.9412 | 229  | 1.3725          |
| 0.7771        | 28.0    | 238  | 1.3823          |
| 0.6941        | 28.9412 | 246  | 1.4508          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1