File size: 2,130 Bytes
238107b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: google/gemma-2-2b-it
library_name: peft
license: gemma
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Gemma-2-2B_task-2_180-samples_config-1_full_auto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma-2-2B_task-2_180-samples_config-1_full_auto
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co./google/gemma-2-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2757 | 1.0 | 17 | 1.2558 |
| 1.0993 | 2.0 | 34 | 1.0768 |
| 0.9179 | 3.0 | 51 | 0.9359 |
| 0.8135 | 4.0 | 68 | 0.8881 |
| 0.7851 | 5.0 | 85 | 0.8660 |
| 0.7461 | 6.0 | 102 | 0.8559 |
| 0.7244 | 7.0 | 119 | 0.8581 |
| 0.6484 | 8.0 | 136 | 0.8743 |
| 0.5865 | 9.0 | 153 | 0.9082 |
| 0.5719 | 10.0 | 170 | 0.9505 |
| 0.5453 | 11.0 | 187 | 1.0115 |
| 0.4079 | 12.0 | 204 | 1.1288 |
| 0.4321 | 13.0 | 221 | 1.1490 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |