File size: 2,673 Bytes
9ad9e86
 
d666c43
 
 
9ad9e86
 
 
d666c43
9ad9e86
 
 
 
 
 
 
 
 
 
 
 
 
d666c43
9ad9e86
d666c43
9ad9e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model: google/gemma-2-2b-it
datasets:
- GaetanMichelet/chat-60_ft_task-2_auto
- GaetanMichelet/chat-120_ft_task-2_auto
library_name: peft
license: gemma
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Gemma-2-2B_task-2_120-samples_config-2_full_auto
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Gemma-2-2B_task-2_120-samples_config-2_full_auto

This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co./google/gemma-2-2b-it) on the GaetanMichelet/chat-60_ft_task-2_auto and the GaetanMichelet/chat-120_ft_task-2_auto datasets.
It achieves the following results on the evaluation set:
- Loss: 0.8633

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.3338        | 0.9091  | 5    | 1.3082          |
| 1.3005        | 2.0     | 11   | 1.2187          |
| 1.1249        | 2.9091  | 16   | 1.1211          |
| 1.0441        | 4.0     | 22   | 1.0411          |
| 0.9601        | 4.9091  | 27   | 0.9654          |
| 0.8731        | 6.0     | 33   | 0.9165          |
| 0.8553        | 6.9091  | 38   | 0.8962          |
| 0.8229        | 8.0     | 44   | 0.8815          |
| 0.7958        | 8.9091  | 49   | 0.8724          |
| 0.7945        | 10.0    | 55   | 0.8658          |
| 0.7557        | 10.9091 | 60   | 0.8634          |
| 0.7322        | 12.0    | 66   | 0.8633          |
| 0.7081        | 12.9091 | 71   | 0.8664          |
| 0.6938        | 14.0    | 77   | 0.8733          |
| 0.6136        | 14.9091 | 82   | 0.8832          |
| 0.6249        | 16.0    | 88   | 0.8980          |
| 0.573         | 16.9091 | 93   | 0.9280          |
| 0.5309        | 18.0    | 99   | 0.9385          |
| 0.5198        | 18.9091 | 104  | 0.9874          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1