--- license: mit base_model: facebook/bart-large-cnn tags: - summarization - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-finetuned-scientific-articles results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers config: pubmed split: train args: pubmed metrics: - name: Rouge1 type: rouge value: 34.2136 --- # bart-large-cnn-finetuned-scientific-articles This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.6416 - Rouge1: 34.2136 - Rouge2: 11.6215 - Rougel: 20.2516 - Rougelsum: 30.6019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 9 - eval_batch_size: 9 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3695 | 1.0 | 56 | 2.8464 | 32.133 | 10.3816 | 18.7538 | 29.311 | | 2.7639 | 2.0 | 112 | 2.6667 | 31.5794 | 10.8708 | 19.2408 | 28.6171 | | 2.517 | 3.0 | 168 | 2.6220 | 33.1806 | 11.2477 | 19.7199 | 30.1012 | | 2.2989 | 4.0 | 224 | 2.6031 | 32.7604 | 10.9356 | 19.4766 | 29.6503 | | 2.0883 | 5.0 | 280 | 2.6416 | 34.2136 | 11.6215 | 20.2516 | 30.6019 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1