--- base_model: openai/whisper-large-v3 datasets: - Gabi00/english-mistakes language: - eng library_name: peft license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Small Eng - Gabriel Mora results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: English-mistakes type: Gabi00/english-mistakes config: default split: validation args: 'config: eng, split: test' metrics: - type: wer value: 12.985346941102685 name: Wer --- # Whisper Small Eng - Gabriel Mora This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the English-mistakes dataset. It achieves the following results on the evaluation set: - Loss: 0.3644 - Wer: 12.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.9139 | 0.1270 | 500 | 0.6388 | 24.1376 | | 0.5572 | 0.2541 | 1000 | 0.4884 | 17.9087 | | 0.5416 | 0.3811 | 1500 | 0.4371 | 15.2460 | | 0.5542 | 0.5081 | 2000 | 0.4156 | 13.7921 | | 0.6599 | 0.6352 | 2500 | 0.4036 | 13.4956 | | 0.6117 | 0.7622 | 3000 | 0.3960 | 13.2676 | | 0.5569 | 0.8892 | 3500 | 0.3890 | 13.1336 | | 0.537 | 1.0163 | 4000 | 0.3850 | 12.5292 | | 0.4677 | 1.1433 | 4500 | 0.3815 | 12.6261 | | 0.5017 | 1.2703 | 5000 | 0.3792 | 12.4836 | | 0.5346 | 1.3974 | 5500 | 0.3761 | 12.3126 | | 0.4858 | 1.5244 | 6000 | 0.3735 | 12.2926 | | 0.5478 | 1.6514 | 6500 | 0.3715 | 12.4009 | | 0.5277 | 1.7785 | 7000 | 0.3699 | 12.2327 | | 0.5153 | 1.9055 | 7500 | 0.3693 | 12.1643 | | 0.5825 | 2.0325 | 8000 | 0.3681 | 12.1387 | | 0.6049 | 2.1596 | 8500 | 0.3670 | 12.3211 | | 0.5248 | 2.2866 | 9000 | 0.3662 | 12.1501 | | 0.554 | 2.4136 | 9500 | 0.3653 | 12.0645 | | 0.5031 | 2.5407 | 10000 | 0.3654 | 12.9312 | | 0.5253 | 2.6677 | 10500 | 0.3647 | 12.9739 | | 0.5132 | 2.7947 | 11000 | 0.3641 | 12.9511 | | 0.5789 | 2.9217 | 11500 | 0.3644 | 12.9853 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1