Upload DQN LunarLander-v2 trained agent
Browse files- DQN-LunarLander-v2.zip +3 -0
- DQN-LunarLander-v2/_stable_baselines3_version +1 -0
- DQN-LunarLander-v2/data +126 -0
- DQN-LunarLander-v2/policy.optimizer.pth +3 -0
- DQN-LunarLander-v2/policy.pth +3 -0
- DQN-LunarLander-v2/pytorch_variables.pth +3 -0
- DQN-LunarLander-v2/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
DQN-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae17ac79931ba7b17707b11511ad363f18f2713b367049e1b02ef226f68a2737
|
3 |
+
size 1134004
|
DQN-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
DQN-LunarLander-v2/data
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7fe0708f5bd0>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7fe0708f5c60>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7fe0708f5cf0>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7fe0708f5d80>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7fe0708f5e10>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fe0708f5ea0>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fe0708f5f30>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe0708f3cc0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
256,
|
22 |
+
256
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"num_timesteps": 1000000,
|
26 |
+
"_total_timesteps": 1000000,
|
27 |
+
"_num_timesteps_at_start": 0,
|
28 |
+
"seed": null,
|
29 |
+
"action_noise": null,
|
30 |
+
"start_time": 1702173064459792879,
|
31 |
+
"learning_rate": 0.00017,
|
32 |
+
"tensorboard_log": null,
|
33 |
+
"_last_obs": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPzKz7CG60/MoQaP/Ee4L4Klqo+Qh+EPgAAAAAAAAAAZqLCu3pjrD+TF829AKUKv76N3Tvjs7c8AAAAAAAAAADaKf49CidZu26kBjsjjhi5kIXgvCoZbboAAIA/AACAP8231D3DiVe6wvBivMb+cbaGsr+68DPgNQAAAAAAAIA/GnPHPcMpXboej/C7IK5JtoNObbq4J7I1AAAAAAAAgD9Q7qi+eekvPsJzQj4NcjK/HEwjvno7Ar4AAAAAAAAAAOBXeT5VCig+vvkmvmDrm763p0S8chsZvAAAAAAAAAAABiAfPvZHcLySONO6GveCOc9Y070uf1M6AACAPwAAgD9NsPM9PYINOs6gLL1ru4W7xvAjPEhAa7wAAIA/AACAP9pPBz64vbu7IjD6OtLSyLg2hye9CeMpugAAgD8AAIA/TYklPtJ4z7vue341e+Y8s/a1NL31na+0AACAPwAAgD+aGwg+7H/iu5U/9rzMHai8iM4zvTpXjr0AAIA/AACAP/qLJz4dH10+LT/cPV+s2L4IN4I9bpMfvAAAAAAAAAAAJsIAPtenfLvB8oc7kbYIumjYw7zAFuy6AACAPwAAgD/NgCq8m/uEvE9qCz7ZCZS+gvfcOmUr1T4AAIA/AACAP8CAUz6G+aU/U8oMP6x7Cb8qmLA+r/WDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqkJT5vXK4/+okYPz5Z077g+qM+gtCQPgAAAAAAAAAAzTCiu8TyrT/VFc29RtEDvyXRuDtiu7c8AAAAAAAAAABaH/491+9Yu9gtzbrRZ0w4uCbgvCNODjoAAIA/AACAP2YA1T32hFe6npNIvLRBerZatb+6sO7jNQAAAAAAAIA/mpnHPfYkXbo69FS8tdWBtexSbbqw9eY0AAAAAAAAgD/e3qm+7PQ/PjErJT7vJjy/I8kcvt6hD74AAAAAAAAAAJMEez6CDi8+zeYnvkUsor76/zy8K/kcvAAAAAAAAAAAJiQfPjZfcLyqKI67kOk1Ovdt073mJA87AACAPwAAgD8NkfQ9pJwlOiQ2L73Zooe7A7QvPGK/brwAAIA/AACAPwBLBz64q7u79SFEu2d3GDl3ZCe9a+6EOgAAgD8AAIA/TYklPtJ4z7ulrPs1A3Cas/K1NL3KiQ61AACAPwAAgD+Tcwg+H3LTu7YXLb0uJCO9nJMlvdDeCb4AAIA/AACAP1NzJj5N32Y+LT/cPR0Fy75cNoM9TpMfvAAAAAAAAAAAgLcAPqTje7uwV9Y63K0IuY8bw7yBdC+6AACAPwAAgD9mmES8D24fvFDd9j1Kjbe+v7GdvFD9zD4AAIA/AACAPwDXTT7whKc/UloPP34QDr/l8a4+ZW5UPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_episode_num": 2608,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": 0.0,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDsyXQdCE+MAWyUS8+MAXSUR0Cyhb+8K5TZdX2UKGgGR0ByCAqBmPHUaAdLkGgIR0Cyhe7c0tROdX2UKGgGR0BxBVJiAlOXaAdLxGgIR0CyhlJJ04ipdX2UKGgGR0Bw0j9m6GxmaAdNWANoCEdAsoZUR6F/QXV9lChoBkdAcnkUSqU/wGgHS6BoCEdAsoc6saKk23V9lChoBkdAcGgd5prULGgHS8ZoCEdAsohWvECNj3V9lChoBkdAR59QbdadMGgHS2FoCEdAsojiqo60Y3V9lChoBkdAQ/EpNKyv92gHS3poCEdAsowM4ACGOHV9lChoBkdAcvndSEUTMGgHTZQBaAhHQLKMQegL7XR1fZQoaAZHQGPPsmOU+s5oB03oA2gIR0Cyjj8cuJ1rdX2UKGgGR0BxL4uRLbpNaAdLs2gIR0CyjklSGahIdX2UKGgGR0A4CJDVpbljaAdLwGgIR0Cyj7OM+/xldX2UKGgGR0A4o2LYPGyYaAdLlGgIR0Cyj7jfzjFRdX2UKGgGR0A6zZxaPjn3aAdLW2gIR0CykWIUJv5ydX2UKGgGR0BxwEtFrl/6aAdNswFoCEdAspHLGaQV9HV9lChoBkdAa6rZg5R0l2gHTQQCaAhHQLKR+/tY0VJ1fZQoaAZHQHHdtQ0oBq9oB02jAWgIR0CykijmW+oMdX2UKGgGR0BtDhNXYDkmaAdNtwNoCEdAspVK4nWrfnV9lChoBkdATWKdJ8OTaGgHS1ZoCEdAspYQqbz9THV9lChoBkdAR+RSLqD9O2gHS6JoCEdAspZskxASnXV9lChoBkdAbzso+fRNRGgHTU8BaAhHQLKXk8eS0Sh1fZQoaAZHQHEYhhYvFm5oB0vpaAhHQLKXvp1zQu51fZQoaAZHQHEtnuRcNYtoB0ubaAhHQLKZQH1OCXh1fZQoaAZHQHKhLdN34bloB0vjaAhHQLKZoSvTw2F1fZQoaAZHQHHxGZAprk9oB0u8aAhHQLKalDXvphZ1fZQoaAZHQHHnaJAMUh5oB0vkaAhHQLKawRArxy51fZQoaAZHQG5HwQtjCpFoB03EAWgIR0Cym8sK9f1IdX2UKGgGR0AjVEmY0EX+aAdLm2gIR0CynQGvKU3XdX2UKGgGR0BqSqpxWDHwaAdNmANoCEdAsp19+2E0znV9lChoBkdAcuGC0WuX/2gHTUkBaAhHQLKgJjSXt0F1fZQoaAZHv/1+mm+CbttoB0uGaAhHQLKgrKU3XI51fZQoaAZHQEklYDklu3toB0vNaAhHQLKgsk8Rtgt1fZQoaAZHQGWCOeSSvDBoB03oA2gIR0CyoOH6Q/5ddX2UKGgGR0BHr7OeJ53UaAdLfWgIR0CyoiLmU4aQdX2UKGgGR0BwOyjtXxOMaAdL5GgIR0Cyowm2Xsw+dX2UKGgGR0BxnWki2UjcaAdL6mgIR0Cyozk+xGDudX2UKGgGR0BwZ4OI68xsaAdLr2gIR0CypcmKQ7tBdX2UKGgGR0Bwmf5hz/6waAdLuWgIR0Cypc0adc0MdX2UKGgGR0BTeyYPXkHVaAdN6ANoCEdAsqcceo1k2HV9lChoBkdAccF+z+m3v2gHTQABaAhHQLKnSgMtsep1fZQoaAZHQG8RxA0Kqn5oB0uqaAhHQLKoiNyHVPN1fZQoaAZHQHIS42jwhGJoB0vJaAhHQLKqFfgaWHF1fZQoaAZHQHBujfrKNhpoB0uyaAhHQLKqknNxEOR1fZQoaAZHQENQ3FUADJVoB0tMaAhHQLKswY7aIvd1fZQoaAZHQEN+NYr8R+VoB0traAhHQLKs7zf779B1fZQoaAZHQHAIsLKFIupoB00cAWgIR0Cyrd/hhpg1dX2UKGgGR0BHLSdFvybyaAdLYmgIR0CysTnQdCE6dX2UKGgGR0Bw23OpsGgSaAdNBAJoCEdAsrPcAJb+tXV9lChoBkdAcCuDa4+bE2gHTQQBaAhHQLKz2yz5XU91fZQoaAZHQHGkzurp7kZoB00gAmgIR0Cys9sFUyYYdX2UKGgGR0BxjxljEvTPaAdNMQFoCEdAsrSYMTewcHV9lChoBkdAcH7mHP/rB2gHTYECaAhHQLK1UwXZXdV1fZQoaAZHQHB7hjJ+2E1oB01BAWgIR0CytVlmjCYUdX2UKGgGR0Bx1D61stTUaAdNAQFoCEdAsrc2P/7zkXV9lChoBkdAczVYL9deIGgHS/loCEdAsrpA0vXbunV9lChoBkdAZgmXgLqlg2gHTegDaAhHQLK6Q4CIUJx1fZQoaAZHQEZQuX/o7mxoB0uBaAhHQLK6d/EwWWR1fZQoaAZHQENCB7u2JBRoB0thaAhHQLK8KYODrZ91fZQoaAZHQG/4FlsguAZoB0ukaAhHQLK8K4DLbHp1fZQoaAZHQHNL52yLQ5ZoB0uxaAhHQLK8u1JUYKp1fZQoaAZHQHGmGpuMuOFoB0vPaAhHQLK+6bRF7Up1fZQoaAZHQHFDj5wfhddoB02rAWgIR0CyvxkPxx1gdX2UKGgGR0BkMlKbrkbQaAdN6ANoCEdAssHdpwjt5XV9lChoBkdAcCEmdiDujWgHS5VoCEdAssMIQ8OkL3V9lChoBkdAbtC8La24NWgHTUgBaAhHQLLK2qhlDnh1fZQoaAZHQHAyfm9xp+NoB00qA2gIR0Cyyw1ev6j4dX2UKGgGR0BtMb28IzFdaAdNOgFoCEdAssvSdK/VRXV9lChoBkdAct0eUY8+zWgHTRABaAhHQLLMu6+nIhh1fZQoaAZHQHDjWs/6frdoB01hAWgIR0CyznTUAks0dX2UKGgGR0ByTyiWVu76aAdNQwFoCEdAss872pQ1rXV9lChoBkdActm1nM+u/2gHTasBaAhHQLLPO+otL+R1fZQoaAZHQHCTL4Fiay9oB0vvaAhHQLLPatQsPJ91fZQoaAZHQE+W4UeuFHtoB0tWaAhHQLLQu6rvLHN1fZQoaAZHwD6YvIwM6R1oB0t6aAhHQLLQ8VWjoIR1fZQoaAZHQHEYmZy+6AhoB00rAmgIR0Cy0TQYLsrvdX2UKGgGR0BhJC704BFNaAdN6ANoCEdAstIheSjgynV9lChoBkdAcrQOzIFNcmgHTUMBaAhHQLLSX/Lkjop1fZQoaAZHQGbgmyPdVNpoB03RA2gIR0Cy07lq8DjjdX2UKGgGR0BwBzF85S3taAdLpWgIR0Cy1FrMs6JZdX2UKGgGR0Bvv6p71Iy1aAdNbwJoCEdAstS4WrOqvXV9lChoBkdAbeKP4mCyyGgHTScDaAhHQLLU5VopQUJ1fZQoaAZHQDe6BDohY/5oB0thaAhHQLLVxZkkKNR1fZQoaAZHQHHK4T9KmKtoB0uwaAhHQLLXJanaWX11fZQoaAZHQHCmV05lvqFoB0v8aAhHQLLXKDXe3x51fZQoaAZHQG7x7BO58ShoB0ugaAhHQLLXKDx9XtB1fZQoaAZHQEyY+otL+P1oB0tXaAhHQLLYkbpu/Dd1fZQoaAZHQG8qdGRV6u5oB0vHaAhHQLLaqlt0mt11fZQoaAZHQG9SpiI+GGpoB0uzaAhHQLLarIi1Rch1fZQoaAZHQHFabcwg1WNoB0vOaAhHQLLaruOS4e91fZQoaAZHQHKM7k4m1IBoB0vyaAhHQLLa1/Spiqh1fZQoaAZHQB0Y1UEPlMhoB0t6aAhHQLLbMiVSn+B1fZQoaAZHQHAOgam4y45oB0uhaAhHQLLbXxHoX9B1fZQoaAZHQHFhDI7vG6xoB0vBaAhHQLLdfrpaA4J1fZQoaAZHQHE3ipFTeftoB00xAWgIR0Cy3bCnP3SKdX2UKGgGR0Bu4qVY6nzhaAdL/WgIR0Cy3deSW7e3dX2UKGgGR0BvFPaDf3vhaAdLpmgIR0Cy3qqASWZ7dX2UKGgGR0AyER15jYqYaAdLbGgIR0Cy4AeL74zrdX2UKGgGR0BhNuU4aP0aaAdN6ANoCEdAsuIKcx0uDnV9lChoBkdAbqg8HObAlGgHS5xoCEdAsuKPoHLRr3V9lChoBkdAcIfLqlgtvmgHS+xoCEdAsuNyRJVbRnVlLg=="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 950016,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
62 |
+
"dtype": "float32",
|
63 |
+
"bounded_below": "[ True True True True True True True True]",
|
64 |
+
"bounded_above": "[ True True True True True True True True]",
|
65 |
+
"_shape": [
|
66 |
+
8
|
67 |
+
],
|
68 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
69 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
70 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
71 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
72 |
+
"_np_random": null
|
73 |
+
},
|
74 |
+
"action_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
76 |
+
":serialized:": "gAWVgwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQY+KPMNk+eeKanLWGJazia4wDaW5jlIoRtT7OOGrvTSJ60GPlYUmY9wB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBWK+n44AdWJ1Yi4=",
|
77 |
+
"n": "4",
|
78 |
+
"start": "0",
|
79 |
+
"_shape": [],
|
80 |
+
"dtype": "int64",
|
81 |
+
"_np_random": "Generator(PCG64)"
|
82 |
+
},
|
83 |
+
"n_envs": 16,
|
84 |
+
"buffer_size": 100000,
|
85 |
+
"batch_size": 128,
|
86 |
+
"learning_starts": 50000,
|
87 |
+
"tau": 1.0,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": -1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fe0708de050>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7fe0708de0e0>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7fe0708de170>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fe0708de200>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe0708d6dc0>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.04,
|
111 |
+
"exploration_fraction": 0.11,
|
112 |
+
"target_update_interval": 625,
|
113 |
+
"_n_calls": 62500,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.04,
|
116 |
+
"lr_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8mSEDhcZ+AhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
119 |
+
},
|
120 |
+
"batch_norm_stats": [],
|
121 |
+
"batch_norm_stats_target": [],
|
122 |
+
"exploration_schedule": {
|
123 |
+
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/pHrhR64Ue4WUUpRoN0c/vCj1wo9cKYWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
125 |
+
}
|
126 |
+
}
|
DQN-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af949ad1cf4cf9e3ee02c67f5684428635a5a3442c9eeff4d2ec0dde22107227
|
3 |
+
size 558368
|
DQN-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:118e2779b29a5ead05461cb2b0e5e0a32ade9c2ae82bb951d33568e29cb9cc93
|
3 |
+
size 557490
|
DQN-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
DQN-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 268.34 +/- 46.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fe0708f5bd0>", "_build": "<function DQNPolicy._build at 0x7fe0708f5c60>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fe0708f5cf0>", "forward": "<function DQNPolicy.forward at 0x7fe0708f5d80>", "_predict": "<function DQNPolicy._predict at 0x7fe0708f5e10>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fe0708f5ea0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fe0708f5f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0708f3cc0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702173064459792879, "learning_rate": 0.00017, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPzKz7CG60/MoQaP/Ee4L4Klqo+Qh+EPgAAAAAAAAAAZqLCu3pjrD+TF829AKUKv76N3Tvjs7c8AAAAAAAAAADaKf49CidZu26kBjsjjhi5kIXgvCoZbboAAIA/AACAP8231D3DiVe6wvBivMb+cbaGsr+68DPgNQAAAAAAAIA/GnPHPcMpXboej/C7IK5JtoNObbq4J7I1AAAAAAAAgD9Q7qi+eekvPsJzQj4NcjK/HEwjvno7Ar4AAAAAAAAAAOBXeT5VCig+vvkmvmDrm763p0S8chsZvAAAAAAAAAAABiAfPvZHcLySONO6GveCOc9Y070uf1M6AACAPwAAgD9NsPM9PYINOs6gLL1ru4W7xvAjPEhAa7wAAIA/AACAP9pPBz64vbu7IjD6OtLSyLg2hye9CeMpugAAgD8AAIA/TYklPtJ4z7vue341e+Y8s/a1NL31na+0AACAPwAAgD+aGwg+7H/iu5U/9rzMHai8iM4zvTpXjr0AAIA/AACAP/qLJz4dH10+LT/cPV+s2L4IN4I9bpMfvAAAAAAAAAAAJsIAPtenfLvB8oc7kbYIumjYw7zAFuy6AACAPwAAgD/NgCq8m/uEvE9qCz7ZCZS+gvfcOmUr1T4AAIA/AACAP8CAUz6G+aU/U8oMP6x7Cb8qmLA+r/WDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqkJT5vXK4/+okYPz5Z077g+qM+gtCQPgAAAAAAAAAAzTCiu8TyrT/VFc29RtEDvyXRuDtiu7c8AAAAAAAAAABaH/491+9Yu9gtzbrRZ0w4uCbgvCNODjoAAIA/AACAP2YA1T32hFe6npNIvLRBerZatb+6sO7jNQAAAAAAAIA/mpnHPfYkXbo69FS8tdWBtexSbbqw9eY0AAAAAAAAgD/e3qm+7PQ/PjErJT7vJjy/I8kcvt6hD74AAAAAAAAAAJMEez6CDi8+zeYnvkUsor76/zy8K/kcvAAAAAAAAAAAJiQfPjZfcLyqKI67kOk1Ovdt073mJA87AACAPwAAgD8NkfQ9pJwlOiQ2L73Zooe7A7QvPGK/brwAAIA/AACAPwBLBz64q7u79SFEu2d3GDl3ZCe9a+6EOgAAgD8AAIA/TYklPtJ4z7ulrPs1A3Cas/K1NL3KiQ61AACAPwAAgD+Tcwg+H3LTu7YXLb0uJCO9nJMlvdDeCb4AAIA/AACAP1NzJj5N32Y+LT/cPR0Fy75cNoM9TpMfvAAAAAAAAAAAgLcAPqTje7uwV9Y63K0IuY8bw7yBdC+6AACAPwAAgD9mmES8D24fvFDd9j1Kjbe+v7GdvFD9zD4AAIA/AACAPwDXTT7whKc/UloPP34QDr/l8a4+ZW5UPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 2608, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDsyXQdCE+MAWyUS8+MAXSUR0Cyhb+8K5TZdX2UKGgGR0ByCAqBmPHUaAdLkGgIR0Cyhe7c0tROdX2UKGgGR0BxBVJiAlOXaAdLxGgIR0CyhlJJ04ipdX2UKGgGR0Bw0j9m6GxmaAdNWANoCEdAsoZUR6F/QXV9lChoBkdAcnkUSqU/wGgHS6BoCEdAsoc6saKk23V9lChoBkdAcGgd5prULGgHS8ZoCEdAsohWvECNj3V9lChoBkdAR59QbdadMGgHS2FoCEdAsojiqo60Y3V9lChoBkdAQ/EpNKyv92gHS3poCEdAsowM4ACGOHV9lChoBkdAcvndSEUTMGgHTZQBaAhHQLKMQegL7XR1fZQoaAZHQGPPsmOU+s5oB03oA2gIR0Cyjj8cuJ1rdX2UKGgGR0BxL4uRLbpNaAdLs2gIR0CyjklSGahIdX2UKGgGR0A4CJDVpbljaAdLwGgIR0Cyj7OM+/xldX2UKGgGR0A4o2LYPGyYaAdLlGgIR0Cyj7jfzjFRdX2UKGgGR0A6zZxaPjn3aAdLW2gIR0CykWIUJv5ydX2UKGgGR0BxwEtFrl/6aAdNswFoCEdAspHLGaQV9HV9lChoBkdAa6rZg5R0l2gHTQQCaAhHQLKR+/tY0VJ1fZQoaAZHQHHdtQ0oBq9oB02jAWgIR0CykijmW+oMdX2UKGgGR0BtDhNXYDkmaAdNtwNoCEdAspVK4nWrfnV9lChoBkdATWKdJ8OTaGgHS1ZoCEdAspYQqbz9THV9lChoBkdAR+RSLqD9O2gHS6JoCEdAspZskxASnXV9lChoBkdAbzso+fRNRGgHTU8BaAhHQLKXk8eS0Sh1fZQoaAZHQHEYhhYvFm5oB0vpaAhHQLKXvp1zQu51fZQoaAZHQHEtnuRcNYtoB0ubaAhHQLKZQH1OCXh1fZQoaAZHQHKhLdN34bloB0vjaAhHQLKZoSvTw2F1fZQoaAZHQHHxGZAprk9oB0u8aAhHQLKalDXvphZ1fZQoaAZHQHHnaJAMUh5oB0vkaAhHQLKawRArxy51fZQoaAZHQG5HwQtjCpFoB03EAWgIR0Cym8sK9f1IdX2UKGgGR0AjVEmY0EX+aAdLm2gIR0CynQGvKU3XdX2UKGgGR0BqSqpxWDHwaAdNmANoCEdAsp19+2E0znV9lChoBkdAcuGC0WuX/2gHTUkBaAhHQLKgJjSXt0F1fZQoaAZHv/1+mm+CbttoB0uGaAhHQLKgrKU3XI51fZQoaAZHQEklYDklu3toB0vNaAhHQLKgsk8Rtgt1fZQoaAZHQGWCOeSSvDBoB03oA2gIR0CyoOH6Q/5ddX2UKGgGR0BHr7OeJ53UaAdLfWgIR0CyoiLmU4aQdX2UKGgGR0BwOyjtXxOMaAdL5GgIR0Cyowm2Xsw+dX2UKGgGR0BxnWki2UjcaAdL6mgIR0Cyozk+xGDudX2UKGgGR0BwZ4OI68xsaAdLr2gIR0CypcmKQ7tBdX2UKGgGR0Bwmf5hz/6waAdLuWgIR0Cypc0adc0MdX2UKGgGR0BTeyYPXkHVaAdN6ANoCEdAsqcceo1k2HV9lChoBkdAccF+z+m3v2gHTQABaAhHQLKnSgMtsep1fZQoaAZHQG8RxA0Kqn5oB0uqaAhHQLKoiNyHVPN1fZQoaAZHQHIS42jwhGJoB0vJaAhHQLKqFfgaWHF1fZQoaAZHQHBujfrKNhpoB0uyaAhHQLKqknNxEOR1fZQoaAZHQENQ3FUADJVoB0tMaAhHQLKswY7aIvd1fZQoaAZHQEN+NYr8R+VoB0traAhHQLKs7zf779B1fZQoaAZHQHAIsLKFIupoB00cAWgIR0Cyrd/hhpg1dX2UKGgGR0BHLSdFvybyaAdLYmgIR0CysTnQdCE6dX2UKGgGR0Bw23OpsGgSaAdNBAJoCEdAsrPcAJb+tXV9lChoBkdAcCuDa4+bE2gHTQQBaAhHQLKz2yz5XU91fZQoaAZHQHGkzurp7kZoB00gAmgIR0Cys9sFUyYYdX2UKGgGR0BxjxljEvTPaAdNMQFoCEdAsrSYMTewcHV9lChoBkdAcH7mHP/rB2gHTYECaAhHQLK1UwXZXdV1fZQoaAZHQHB7hjJ+2E1oB01BAWgIR0CytVlmjCYUdX2UKGgGR0Bx1D61stTUaAdNAQFoCEdAsrc2P/7zkXV9lChoBkdAczVYL9deIGgHS/loCEdAsrpA0vXbunV9lChoBkdAZgmXgLqlg2gHTegDaAhHQLK6Q4CIUJx1fZQoaAZHQEZQuX/o7mxoB0uBaAhHQLK6d/EwWWR1fZQoaAZHQENCB7u2JBRoB0thaAhHQLK8KYODrZ91fZQoaAZHQG/4FlsguAZoB0ukaAhHQLK8K4DLbHp1fZQoaAZHQHNL52yLQ5ZoB0uxaAhHQLK8u1JUYKp1fZQoaAZHQHGmGpuMuOFoB0vPaAhHQLK+6bRF7Up1fZQoaAZHQHFDj5wfhddoB02rAWgIR0CyvxkPxx1gdX2UKGgGR0BkMlKbrkbQaAdN6ANoCEdAssHdpwjt5XV9lChoBkdAcCEmdiDujWgHS5VoCEdAssMIQ8OkL3V9lChoBkdAbtC8La24NWgHTUgBaAhHQLLK2qhlDnh1fZQoaAZHQHAyfm9xp+NoB00qA2gIR0Cyyw1ev6j4dX2UKGgGR0BtMb28IzFdaAdNOgFoCEdAssvSdK/VRXV9lChoBkdAct0eUY8+zWgHTRABaAhHQLLMu6+nIhh1fZQoaAZHQHDjWs/6frdoB01hAWgIR0CyznTUAks0dX2UKGgGR0ByTyiWVu76aAdNQwFoCEdAss872pQ1rXV9lChoBkdActm1nM+u/2gHTasBaAhHQLLPO+otL+R1fZQoaAZHQHCTL4Fiay9oB0vvaAhHQLLPatQsPJ91fZQoaAZHQE+W4UeuFHtoB0tWaAhHQLLQu6rvLHN1fZQoaAZHwD6YvIwM6R1oB0t6aAhHQLLQ8VWjoIR1fZQoaAZHQHEYmZy+6AhoB00rAmgIR0Cy0TQYLsrvdX2UKGgGR0BhJC704BFNaAdN6ANoCEdAstIheSjgynV9lChoBkdAcrQOzIFNcmgHTUMBaAhHQLLSX/Lkjop1fZQoaAZHQGbgmyPdVNpoB03RA2gIR0Cy07lq8DjjdX2UKGgGR0BwBzF85S3taAdLpWgIR0Cy1FrMs6JZdX2UKGgGR0Bvv6p71Iy1aAdNbwJoCEdAstS4WrOqvXV9lChoBkdAbeKP4mCyyGgHTScDaAhHQLLU5VopQUJ1fZQoaAZHQDe6BDohY/5oB0thaAhHQLLVxZkkKNR1fZQoaAZHQHHK4T9KmKtoB0uwaAhHQLLXJanaWX11fZQoaAZHQHCmV05lvqFoB0v8aAhHQLLXKDXe3x51fZQoaAZHQG7x7BO58ShoB0ugaAhHQLLXKDx9XtB1fZQoaAZHQEyY+otL+P1oB0tXaAhHQLLYkbpu/Dd1fZQoaAZHQG8qdGRV6u5oB0vHaAhHQLLaqlt0mt11fZQoaAZHQG9SpiI+GGpoB0uzaAhHQLLarIi1Rch1fZQoaAZHQHFabcwg1WNoB0vOaAhHQLLaruOS4e91fZQoaAZHQHKM7k4m1IBoB0vyaAhHQLLa1/Spiqh1fZQoaAZHQB0Y1UEPlMhoB0t6aAhHQLLbMiVSn+B1fZQoaAZHQHAOgam4y45oB0uhaAhHQLLbXxHoX9B1fZQoaAZHQHFhDI7vG6xoB0vBaAhHQLLdfrpaA4J1fZQoaAZHQHE3ipFTeftoB00xAWgIR0Cy3bCnP3SKdX2UKGgGR0Bu4qVY6nzhaAdL/WgIR0Cy3deSW7e3dX2UKGgGR0BvFPaDf3vhaAdLpmgIR0Cy3qqASWZ7dX2UKGgGR0AyER15jYqYaAdLbGgIR0Cy4AeL74zrdX2UKGgGR0BhNuU4aP0aaAdN6ANoCEdAsuIKcx0uDnV9lChoBkdAbqg8HObAlGgHS5xoCEdAsuKPoHLRr3V9lChoBkdAcIfLqlgtvmgHS+xoCEdAsuNyRJVbRnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 950016, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQY+KPMNk+eeKanLWGJazia4wDaW5jlIoRtT7OOGrvTSJ60GPlYUmY9wB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBWK+n44AdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 100000, "batch_size": 128, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fe0708de050>", "add": "<function ReplayBuffer.add at 0x7fe0708de0e0>", "sample": "<function ReplayBuffer.sample at 0x7fe0708de170>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe0708de200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0708d6dc0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.04, "exploration_fraction": 0.11, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.04, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8mSEDhcZ+AhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/pHrhR64Ue4WUUpRoN0c/vCj1wo9cKYWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (125 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 268.3405285, "std_reward": 46.42407524573873, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-10T02:49:47.732517"}
|