Jhin4 commited on
Commit
8c2bd8d
1 Parent(s): 8690a3f

Upload DQN LunarLander-v2 trained agent

Browse files
DQN-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae17ac79931ba7b17707b11511ad363f18f2713b367049e1b02ef226f68a2737
3
+ size 1134004
DQN-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
DQN-LunarLander-v2/data ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7fe0708f5bd0>",
9
+ "_build": "<function DQNPolicy._build at 0x7fe0708f5c60>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7fe0708f5cf0>",
11
+ "forward": "<function DQNPolicy.forward at 0x7fe0708f5d80>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7fe0708f5e10>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fe0708f5ea0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fe0708f5f30>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7fe0708f3cc0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 256,
22
+ 256
23
+ ]
24
+ },
25
+ "num_timesteps": 1000000,
26
+ "_total_timesteps": 1000000,
27
+ "_num_timesteps_at_start": 0,
28
+ "seed": null,
29
+ "action_noise": null,
30
+ "start_time": 1702173064459792879,
31
+ "learning_rate": 0.00017,
32
+ "tensorboard_log": null,
33
+ "_last_obs": {
34
+ ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPzKz7CG60/MoQaP/Ee4L4Klqo+Qh+EPgAAAAAAAAAAZqLCu3pjrD+TF829AKUKv76N3Tvjs7c8AAAAAAAAAADaKf49CidZu26kBjsjjhi5kIXgvCoZbboAAIA/AACAP8231D3DiVe6wvBivMb+cbaGsr+68DPgNQAAAAAAAIA/GnPHPcMpXboej/C7IK5JtoNObbq4J7I1AAAAAAAAgD9Q7qi+eekvPsJzQj4NcjK/HEwjvno7Ar4AAAAAAAAAAOBXeT5VCig+vvkmvmDrm763p0S8chsZvAAAAAAAAAAABiAfPvZHcLySONO6GveCOc9Y070uf1M6AACAPwAAgD9NsPM9PYINOs6gLL1ru4W7xvAjPEhAa7wAAIA/AACAP9pPBz64vbu7IjD6OtLSyLg2hye9CeMpugAAgD8AAIA/TYklPtJ4z7vue341e+Y8s/a1NL31na+0AACAPwAAgD+aGwg+7H/iu5U/9rzMHai8iM4zvTpXjr0AAIA/AACAP/qLJz4dH10+LT/cPV+s2L4IN4I9bpMfvAAAAAAAAAAAJsIAPtenfLvB8oc7kbYIumjYw7zAFuy6AACAPwAAgD/NgCq8m/uEvE9qCz7ZCZS+gvfcOmUr1T4AAIA/AACAP8CAUz6G+aU/U8oMP6x7Cb8qmLA+r/WDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqkJT5vXK4/+okYPz5Z077g+qM+gtCQPgAAAAAAAAAAzTCiu8TyrT/VFc29RtEDvyXRuDtiu7c8AAAAAAAAAABaH/491+9Yu9gtzbrRZ0w4uCbgvCNODjoAAIA/AACAP2YA1T32hFe6npNIvLRBerZatb+6sO7jNQAAAAAAAIA/mpnHPfYkXbo69FS8tdWBtexSbbqw9eY0AAAAAAAAgD/e3qm+7PQ/PjErJT7vJjy/I8kcvt6hD74AAAAAAAAAAJMEez6CDi8+zeYnvkUsor76/zy8K/kcvAAAAAAAAAAAJiQfPjZfcLyqKI67kOk1Ovdt073mJA87AACAPwAAgD8NkfQ9pJwlOiQ2L73Zooe7A7QvPGK/brwAAIA/AACAPwBLBz64q7u79SFEu2d3GDl3ZCe9a+6EOgAAgD8AAIA/TYklPtJ4z7ulrPs1A3Cas/K1NL3KiQ61AACAPwAAgD+Tcwg+H3LTu7YXLb0uJCO9nJMlvdDeCb4AAIA/AACAP1NzJj5N32Y+LT/cPR0Fy75cNoM9TpMfvAAAAAAAAAAAgLcAPqTje7uwV9Y63K0IuY8bw7yBdC+6AACAPwAAgD9mmES8D24fvFDd9j1Kjbe+v7GdvFD9zD4AAIA/AACAPwDXTT7whKc/UloPP34QDr/l8a4+ZW5UPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
44
+ },
45
+ "_episode_num": 2608,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": 0.0,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDsyXQdCE+MAWyUS8+MAXSUR0Cyhb+8K5TZdX2UKGgGR0ByCAqBmPHUaAdLkGgIR0Cyhe7c0tROdX2UKGgGR0BxBVJiAlOXaAdLxGgIR0CyhlJJ04ipdX2UKGgGR0Bw0j9m6GxmaAdNWANoCEdAsoZUR6F/QXV9lChoBkdAcnkUSqU/wGgHS6BoCEdAsoc6saKk23V9lChoBkdAcGgd5prULGgHS8ZoCEdAsohWvECNj3V9lChoBkdAR59QbdadMGgHS2FoCEdAsojiqo60Y3V9lChoBkdAQ/EpNKyv92gHS3poCEdAsowM4ACGOHV9lChoBkdAcvndSEUTMGgHTZQBaAhHQLKMQegL7XR1fZQoaAZHQGPPsmOU+s5oB03oA2gIR0Cyjj8cuJ1rdX2UKGgGR0BxL4uRLbpNaAdLs2gIR0CyjklSGahIdX2UKGgGR0A4CJDVpbljaAdLwGgIR0Cyj7OM+/xldX2UKGgGR0A4o2LYPGyYaAdLlGgIR0Cyj7jfzjFRdX2UKGgGR0A6zZxaPjn3aAdLW2gIR0CykWIUJv5ydX2UKGgGR0BxwEtFrl/6aAdNswFoCEdAspHLGaQV9HV9lChoBkdAa6rZg5R0l2gHTQQCaAhHQLKR+/tY0VJ1fZQoaAZHQHHdtQ0oBq9oB02jAWgIR0CykijmW+oMdX2UKGgGR0BtDhNXYDkmaAdNtwNoCEdAspVK4nWrfnV9lChoBkdATWKdJ8OTaGgHS1ZoCEdAspYQqbz9THV9lChoBkdAR+RSLqD9O2gHS6JoCEdAspZskxASnXV9lChoBkdAbzso+fRNRGgHTU8BaAhHQLKXk8eS0Sh1fZQoaAZHQHEYhhYvFm5oB0vpaAhHQLKXvp1zQu51fZQoaAZHQHEtnuRcNYtoB0ubaAhHQLKZQH1OCXh1fZQoaAZHQHKhLdN34bloB0vjaAhHQLKZoSvTw2F1fZQoaAZHQHHxGZAprk9oB0u8aAhHQLKalDXvphZ1fZQoaAZHQHHnaJAMUh5oB0vkaAhHQLKawRArxy51fZQoaAZHQG5HwQtjCpFoB03EAWgIR0Cym8sK9f1IdX2UKGgGR0AjVEmY0EX+aAdLm2gIR0CynQGvKU3XdX2UKGgGR0BqSqpxWDHwaAdNmANoCEdAsp19+2E0znV9lChoBkdAcuGC0WuX/2gHTUkBaAhHQLKgJjSXt0F1fZQoaAZHv/1+mm+CbttoB0uGaAhHQLKgrKU3XI51fZQoaAZHQEklYDklu3toB0vNaAhHQLKgsk8Rtgt1fZQoaAZHQGWCOeSSvDBoB03oA2gIR0CyoOH6Q/5ddX2UKGgGR0BHr7OeJ53UaAdLfWgIR0CyoiLmU4aQdX2UKGgGR0BwOyjtXxOMaAdL5GgIR0Cyowm2Xsw+dX2UKGgGR0BxnWki2UjcaAdL6mgIR0Cyozk+xGDudX2UKGgGR0BwZ4OI68xsaAdLr2gIR0CypcmKQ7tBdX2UKGgGR0Bwmf5hz/6waAdLuWgIR0Cypc0adc0MdX2UKGgGR0BTeyYPXkHVaAdN6ANoCEdAsqcceo1k2HV9lChoBkdAccF+z+m3v2gHTQABaAhHQLKnSgMtsep1fZQoaAZHQG8RxA0Kqn5oB0uqaAhHQLKoiNyHVPN1fZQoaAZHQHIS42jwhGJoB0vJaAhHQLKqFfgaWHF1fZQoaAZHQHBujfrKNhpoB0uyaAhHQLKqknNxEOR1fZQoaAZHQENQ3FUADJVoB0tMaAhHQLKswY7aIvd1fZQoaAZHQEN+NYr8R+VoB0traAhHQLKs7zf779B1fZQoaAZHQHAIsLKFIupoB00cAWgIR0Cyrd/hhpg1dX2UKGgGR0BHLSdFvybyaAdLYmgIR0CysTnQdCE6dX2UKGgGR0Bw23OpsGgSaAdNBAJoCEdAsrPcAJb+tXV9lChoBkdAcCuDa4+bE2gHTQQBaAhHQLKz2yz5XU91fZQoaAZHQHGkzurp7kZoB00gAmgIR0Cys9sFUyYYdX2UKGgGR0BxjxljEvTPaAdNMQFoCEdAsrSYMTewcHV9lChoBkdAcH7mHP/rB2gHTYECaAhHQLK1UwXZXdV1fZQoaAZHQHB7hjJ+2E1oB01BAWgIR0CytVlmjCYUdX2UKGgGR0Bx1D61stTUaAdNAQFoCEdAsrc2P/7zkXV9lChoBkdAczVYL9deIGgHS/loCEdAsrpA0vXbunV9lChoBkdAZgmXgLqlg2gHTegDaAhHQLK6Q4CIUJx1fZQoaAZHQEZQuX/o7mxoB0uBaAhHQLK6d/EwWWR1fZQoaAZHQENCB7u2JBRoB0thaAhHQLK8KYODrZ91fZQoaAZHQG/4FlsguAZoB0ukaAhHQLK8K4DLbHp1fZQoaAZHQHNL52yLQ5ZoB0uxaAhHQLK8u1JUYKp1fZQoaAZHQHGmGpuMuOFoB0vPaAhHQLK+6bRF7Up1fZQoaAZHQHFDj5wfhddoB02rAWgIR0CyvxkPxx1gdX2UKGgGR0BkMlKbrkbQaAdN6ANoCEdAssHdpwjt5XV9lChoBkdAcCEmdiDujWgHS5VoCEdAssMIQ8OkL3V9lChoBkdAbtC8La24NWgHTUgBaAhHQLLK2qhlDnh1fZQoaAZHQHAyfm9xp+NoB00qA2gIR0Cyyw1ev6j4dX2UKGgGR0BtMb28IzFdaAdNOgFoCEdAssvSdK/VRXV9lChoBkdAct0eUY8+zWgHTRABaAhHQLLMu6+nIhh1fZQoaAZHQHDjWs/6frdoB01hAWgIR0CyznTUAks0dX2UKGgGR0ByTyiWVu76aAdNQwFoCEdAss872pQ1rXV9lChoBkdActm1nM+u/2gHTasBaAhHQLLPO+otL+R1fZQoaAZHQHCTL4Fiay9oB0vvaAhHQLLPatQsPJ91fZQoaAZHQE+W4UeuFHtoB0tWaAhHQLLQu6rvLHN1fZQoaAZHwD6YvIwM6R1oB0t6aAhHQLLQ8VWjoIR1fZQoaAZHQHEYmZy+6AhoB00rAmgIR0Cy0TQYLsrvdX2UKGgGR0BhJC704BFNaAdN6ANoCEdAstIheSjgynV9lChoBkdAcrQOzIFNcmgHTUMBaAhHQLLSX/Lkjop1fZQoaAZHQGbgmyPdVNpoB03RA2gIR0Cy07lq8DjjdX2UKGgGR0BwBzF85S3taAdLpWgIR0Cy1FrMs6JZdX2UKGgGR0Bvv6p71Iy1aAdNbwJoCEdAstS4WrOqvXV9lChoBkdAbeKP4mCyyGgHTScDaAhHQLLU5VopQUJ1fZQoaAZHQDe6BDohY/5oB0thaAhHQLLVxZkkKNR1fZQoaAZHQHHK4T9KmKtoB0uwaAhHQLLXJanaWX11fZQoaAZHQHCmV05lvqFoB0v8aAhHQLLXKDXe3x51fZQoaAZHQG7x7BO58ShoB0ugaAhHQLLXKDx9XtB1fZQoaAZHQEyY+otL+P1oB0tXaAhHQLLYkbpu/Dd1fZQoaAZHQG8qdGRV6u5oB0vHaAhHQLLaqlt0mt11fZQoaAZHQG9SpiI+GGpoB0uzaAhHQLLarIi1Rch1fZQoaAZHQHFabcwg1WNoB0vOaAhHQLLaruOS4e91fZQoaAZHQHKM7k4m1IBoB0vyaAhHQLLa1/Spiqh1fZQoaAZHQB0Y1UEPlMhoB0t6aAhHQLLbMiVSn+B1fZQoaAZHQHAOgam4y45oB0uhaAhHQLLbXxHoX9B1fZQoaAZHQHFhDI7vG6xoB0vBaAhHQLLdfrpaA4J1fZQoaAZHQHE3ipFTeftoB00xAWgIR0Cy3bCnP3SKdX2UKGgGR0Bu4qVY6nzhaAdL/WgIR0Cy3deSW7e3dX2UKGgGR0BvFPaDf3vhaAdLpmgIR0Cy3qqASWZ7dX2UKGgGR0AyER15jYqYaAdLbGgIR0Cy4AeL74zrdX2UKGgGR0BhNuU4aP0aaAdN6ANoCEdAsuIKcx0uDnV9lChoBkdAbqg8HObAlGgHS5xoCEdAsuKPoHLRr3V9lChoBkdAcIfLqlgtvmgHS+xoCEdAsuNyRJVbRnVlLg=="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 950016,
59
+ "observation_space": {
60
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
62
+ "dtype": "float32",
63
+ "bounded_below": "[ True True True True True True True True]",
64
+ "bounded_above": "[ True True True True True True True True]",
65
+ "_shape": [
66
+ 8
67
+ ],
68
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
69
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
70
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
71
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
72
+ "_np_random": null
73
+ },
74
+ "action_space": {
75
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
+ ":serialized:": "gAWVgwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQY+KPMNk+eeKanLWGJazia4wDaW5jlIoRtT7OOGrvTSJ60GPlYUmY9wB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBWK+n44AdWJ1Yi4=",
77
+ "n": "4",
78
+ "start": "0",
79
+ "_shape": [],
80
+ "dtype": "int64",
81
+ "_np_random": "Generator(PCG64)"
82
+ },
83
+ "n_envs": 16,
84
+ "buffer_size": 100000,
85
+ "batch_size": 128,
86
+ "learning_starts": 50000,
87
+ "tau": 1.0,
88
+ "gamma": 0.99,
89
+ "gradient_steps": -1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fe0708de050>",
97
+ "add": "<function ReplayBuffer.add at 0x7fe0708de0e0>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7fe0708de170>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe0708de200>",
100
+ "__abstractmethods__": "frozenset()",
101
+ "_abc_impl": "<_abc._abc_data object at 0x7fe0708d6dc0>"
102
+ },
103
+ "replay_buffer_kwargs": {},
104
+ "train_freq": {
105
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
106
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
107
+ },
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.04,
111
+ "exploration_fraction": 0.11,
112
+ "target_update_interval": 625,
113
+ "_n_calls": 62500,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.04,
116
+ "lr_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8mSEDhcZ+AhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
119
+ },
120
+ "batch_norm_stats": [],
121
+ "batch_norm_stats_target": [],
122
+ "exploration_schedule": {
123
+ ":type:": "<class 'function'>",
124
+ ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/pHrhR64Ue4WUUpRoN0c/vCj1wo9cKYWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
125
+ }
126
+ }
DQN-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af949ad1cf4cf9e3ee02c67f5684428635a5a3442c9eeff4d2ec0dde22107227
3
+ size 558368
DQN-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:118e2779b29a5ead05461cb2b0e5e0a32ade9c2ae82bb951d33568e29cb9cc93
3
+ size 557490
DQN-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
DQN-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 268.34 +/- 46.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fe0708f5bd0>", "_build": "<function DQNPolicy._build at 0x7fe0708f5c60>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fe0708f5cf0>", "forward": "<function DQNPolicy.forward at 0x7fe0708f5d80>", "_predict": "<function DQNPolicy._predict at 0x7fe0708f5e10>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fe0708f5ea0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fe0708f5f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0708f3cc0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702173064459792879, "learning_rate": 0.00017, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPzKz7CG60/MoQaP/Ee4L4Klqo+Qh+EPgAAAAAAAAAAZqLCu3pjrD+TF829AKUKv76N3Tvjs7c8AAAAAAAAAADaKf49CidZu26kBjsjjhi5kIXgvCoZbboAAIA/AACAP8231D3DiVe6wvBivMb+cbaGsr+68DPgNQAAAAAAAIA/GnPHPcMpXboej/C7IK5JtoNObbq4J7I1AAAAAAAAgD9Q7qi+eekvPsJzQj4NcjK/HEwjvno7Ar4AAAAAAAAAAOBXeT5VCig+vvkmvmDrm763p0S8chsZvAAAAAAAAAAABiAfPvZHcLySONO6GveCOc9Y070uf1M6AACAPwAAgD9NsPM9PYINOs6gLL1ru4W7xvAjPEhAa7wAAIA/AACAP9pPBz64vbu7IjD6OtLSyLg2hye9CeMpugAAgD8AAIA/TYklPtJ4z7vue341e+Y8s/a1NL31na+0AACAPwAAgD+aGwg+7H/iu5U/9rzMHai8iM4zvTpXjr0AAIA/AACAP/qLJz4dH10+LT/cPV+s2L4IN4I9bpMfvAAAAAAAAAAAJsIAPtenfLvB8oc7kbYIumjYw7zAFuy6AACAPwAAgD/NgCq8m/uEvE9qCz7ZCZS+gvfcOmUr1T4AAIA/AACAP8CAUz6G+aU/U8oMP6x7Cb8qmLA+r/WDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqkJT5vXK4/+okYPz5Z077g+qM+gtCQPgAAAAAAAAAAzTCiu8TyrT/VFc29RtEDvyXRuDtiu7c8AAAAAAAAAABaH/491+9Yu9gtzbrRZ0w4uCbgvCNODjoAAIA/AACAP2YA1T32hFe6npNIvLRBerZatb+6sO7jNQAAAAAAAIA/mpnHPfYkXbo69FS8tdWBtexSbbqw9eY0AAAAAAAAgD/e3qm+7PQ/PjErJT7vJjy/I8kcvt6hD74AAAAAAAAAAJMEez6CDi8+zeYnvkUsor76/zy8K/kcvAAAAAAAAAAAJiQfPjZfcLyqKI67kOk1Ovdt073mJA87AACAPwAAgD8NkfQ9pJwlOiQ2L73Zooe7A7QvPGK/brwAAIA/AACAPwBLBz64q7u79SFEu2d3GDl3ZCe9a+6EOgAAgD8AAIA/TYklPtJ4z7ulrPs1A3Cas/K1NL3KiQ61AACAPwAAgD+Tcwg+H3LTu7YXLb0uJCO9nJMlvdDeCb4AAIA/AACAP1NzJj5N32Y+LT/cPR0Fy75cNoM9TpMfvAAAAAAAAAAAgLcAPqTje7uwV9Y63K0IuY8bw7yBdC+6AACAPwAAgD9mmES8D24fvFDd9j1Kjbe+v7GdvFD9zD4AAIA/AACAPwDXTT7whKc/UloPP34QDr/l8a4+ZW5UPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 2608, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDsyXQdCE+MAWyUS8+MAXSUR0Cyhb+8K5TZdX2UKGgGR0ByCAqBmPHUaAdLkGgIR0Cyhe7c0tROdX2UKGgGR0BxBVJiAlOXaAdLxGgIR0CyhlJJ04ipdX2UKGgGR0Bw0j9m6GxmaAdNWANoCEdAsoZUR6F/QXV9lChoBkdAcnkUSqU/wGgHS6BoCEdAsoc6saKk23V9lChoBkdAcGgd5prULGgHS8ZoCEdAsohWvECNj3V9lChoBkdAR59QbdadMGgHS2FoCEdAsojiqo60Y3V9lChoBkdAQ/EpNKyv92gHS3poCEdAsowM4ACGOHV9lChoBkdAcvndSEUTMGgHTZQBaAhHQLKMQegL7XR1fZQoaAZHQGPPsmOU+s5oB03oA2gIR0Cyjj8cuJ1rdX2UKGgGR0BxL4uRLbpNaAdLs2gIR0CyjklSGahIdX2UKGgGR0A4CJDVpbljaAdLwGgIR0Cyj7OM+/xldX2UKGgGR0A4o2LYPGyYaAdLlGgIR0Cyj7jfzjFRdX2UKGgGR0A6zZxaPjn3aAdLW2gIR0CykWIUJv5ydX2UKGgGR0BxwEtFrl/6aAdNswFoCEdAspHLGaQV9HV9lChoBkdAa6rZg5R0l2gHTQQCaAhHQLKR+/tY0VJ1fZQoaAZHQHHdtQ0oBq9oB02jAWgIR0CykijmW+oMdX2UKGgGR0BtDhNXYDkmaAdNtwNoCEdAspVK4nWrfnV9lChoBkdATWKdJ8OTaGgHS1ZoCEdAspYQqbz9THV9lChoBkdAR+RSLqD9O2gHS6JoCEdAspZskxASnXV9lChoBkdAbzso+fRNRGgHTU8BaAhHQLKXk8eS0Sh1fZQoaAZHQHEYhhYvFm5oB0vpaAhHQLKXvp1zQu51fZQoaAZHQHEtnuRcNYtoB0ubaAhHQLKZQH1OCXh1fZQoaAZHQHKhLdN34bloB0vjaAhHQLKZoSvTw2F1fZQoaAZHQHHxGZAprk9oB0u8aAhHQLKalDXvphZ1fZQoaAZHQHHnaJAMUh5oB0vkaAhHQLKawRArxy51fZQoaAZHQG5HwQtjCpFoB03EAWgIR0Cym8sK9f1IdX2UKGgGR0AjVEmY0EX+aAdLm2gIR0CynQGvKU3XdX2UKGgGR0BqSqpxWDHwaAdNmANoCEdAsp19+2E0znV9lChoBkdAcuGC0WuX/2gHTUkBaAhHQLKgJjSXt0F1fZQoaAZHv/1+mm+CbttoB0uGaAhHQLKgrKU3XI51fZQoaAZHQEklYDklu3toB0vNaAhHQLKgsk8Rtgt1fZQoaAZHQGWCOeSSvDBoB03oA2gIR0CyoOH6Q/5ddX2UKGgGR0BHr7OeJ53UaAdLfWgIR0CyoiLmU4aQdX2UKGgGR0BwOyjtXxOMaAdL5GgIR0Cyowm2Xsw+dX2UKGgGR0BxnWki2UjcaAdL6mgIR0Cyozk+xGDudX2UKGgGR0BwZ4OI68xsaAdLr2gIR0CypcmKQ7tBdX2UKGgGR0Bwmf5hz/6waAdLuWgIR0Cypc0adc0MdX2UKGgGR0BTeyYPXkHVaAdN6ANoCEdAsqcceo1k2HV9lChoBkdAccF+z+m3v2gHTQABaAhHQLKnSgMtsep1fZQoaAZHQG8RxA0Kqn5oB0uqaAhHQLKoiNyHVPN1fZQoaAZHQHIS42jwhGJoB0vJaAhHQLKqFfgaWHF1fZQoaAZHQHBujfrKNhpoB0uyaAhHQLKqknNxEOR1fZQoaAZHQENQ3FUADJVoB0tMaAhHQLKswY7aIvd1fZQoaAZHQEN+NYr8R+VoB0traAhHQLKs7zf779B1fZQoaAZHQHAIsLKFIupoB00cAWgIR0Cyrd/hhpg1dX2UKGgGR0BHLSdFvybyaAdLYmgIR0CysTnQdCE6dX2UKGgGR0Bw23OpsGgSaAdNBAJoCEdAsrPcAJb+tXV9lChoBkdAcCuDa4+bE2gHTQQBaAhHQLKz2yz5XU91fZQoaAZHQHGkzurp7kZoB00gAmgIR0Cys9sFUyYYdX2UKGgGR0BxjxljEvTPaAdNMQFoCEdAsrSYMTewcHV9lChoBkdAcH7mHP/rB2gHTYECaAhHQLK1UwXZXdV1fZQoaAZHQHB7hjJ+2E1oB01BAWgIR0CytVlmjCYUdX2UKGgGR0Bx1D61stTUaAdNAQFoCEdAsrc2P/7zkXV9lChoBkdAczVYL9deIGgHS/loCEdAsrpA0vXbunV9lChoBkdAZgmXgLqlg2gHTegDaAhHQLK6Q4CIUJx1fZQoaAZHQEZQuX/o7mxoB0uBaAhHQLK6d/EwWWR1fZQoaAZHQENCB7u2JBRoB0thaAhHQLK8KYODrZ91fZQoaAZHQG/4FlsguAZoB0ukaAhHQLK8K4DLbHp1fZQoaAZHQHNL52yLQ5ZoB0uxaAhHQLK8u1JUYKp1fZQoaAZHQHGmGpuMuOFoB0vPaAhHQLK+6bRF7Up1fZQoaAZHQHFDj5wfhddoB02rAWgIR0CyvxkPxx1gdX2UKGgGR0BkMlKbrkbQaAdN6ANoCEdAssHdpwjt5XV9lChoBkdAcCEmdiDujWgHS5VoCEdAssMIQ8OkL3V9lChoBkdAbtC8La24NWgHTUgBaAhHQLLK2qhlDnh1fZQoaAZHQHAyfm9xp+NoB00qA2gIR0Cyyw1ev6j4dX2UKGgGR0BtMb28IzFdaAdNOgFoCEdAssvSdK/VRXV9lChoBkdAct0eUY8+zWgHTRABaAhHQLLMu6+nIhh1fZQoaAZHQHDjWs/6frdoB01hAWgIR0CyznTUAks0dX2UKGgGR0ByTyiWVu76aAdNQwFoCEdAss872pQ1rXV9lChoBkdActm1nM+u/2gHTasBaAhHQLLPO+otL+R1fZQoaAZHQHCTL4Fiay9oB0vvaAhHQLLPatQsPJ91fZQoaAZHQE+W4UeuFHtoB0tWaAhHQLLQu6rvLHN1fZQoaAZHwD6YvIwM6R1oB0t6aAhHQLLQ8VWjoIR1fZQoaAZHQHEYmZy+6AhoB00rAmgIR0Cy0TQYLsrvdX2UKGgGR0BhJC704BFNaAdN6ANoCEdAstIheSjgynV9lChoBkdAcrQOzIFNcmgHTUMBaAhHQLLSX/Lkjop1fZQoaAZHQGbgmyPdVNpoB03RA2gIR0Cy07lq8DjjdX2UKGgGR0BwBzF85S3taAdLpWgIR0Cy1FrMs6JZdX2UKGgGR0Bvv6p71Iy1aAdNbwJoCEdAstS4WrOqvXV9lChoBkdAbeKP4mCyyGgHTScDaAhHQLLU5VopQUJ1fZQoaAZHQDe6BDohY/5oB0thaAhHQLLVxZkkKNR1fZQoaAZHQHHK4T9KmKtoB0uwaAhHQLLXJanaWX11fZQoaAZHQHCmV05lvqFoB0v8aAhHQLLXKDXe3x51fZQoaAZHQG7x7BO58ShoB0ugaAhHQLLXKDx9XtB1fZQoaAZHQEyY+otL+P1oB0tXaAhHQLLYkbpu/Dd1fZQoaAZHQG8qdGRV6u5oB0vHaAhHQLLaqlt0mt11fZQoaAZHQG9SpiI+GGpoB0uzaAhHQLLarIi1Rch1fZQoaAZHQHFabcwg1WNoB0vOaAhHQLLaruOS4e91fZQoaAZHQHKM7k4m1IBoB0vyaAhHQLLa1/Spiqh1fZQoaAZHQB0Y1UEPlMhoB0t6aAhHQLLbMiVSn+B1fZQoaAZHQHAOgam4y45oB0uhaAhHQLLbXxHoX9B1fZQoaAZHQHFhDI7vG6xoB0vBaAhHQLLdfrpaA4J1fZQoaAZHQHE3ipFTeftoB00xAWgIR0Cy3bCnP3SKdX2UKGgGR0Bu4qVY6nzhaAdL/WgIR0Cy3deSW7e3dX2UKGgGR0BvFPaDf3vhaAdLpmgIR0Cy3qqASWZ7dX2UKGgGR0AyER15jYqYaAdLbGgIR0Cy4AeL74zrdX2UKGgGR0BhNuU4aP0aaAdN6ANoCEdAsuIKcx0uDnV9lChoBkdAbqg8HObAlGgHS5xoCEdAsuKPoHLRr3V9lChoBkdAcIfLqlgtvmgHS+xoCEdAsuNyRJVbRnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 950016, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQY+KPMNk+eeKanLWGJazia4wDaW5jlIoRtT7OOGrvTSJ60GPlYUmY9wB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpSKBWK+n44AdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 100000, "batch_size": 128, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fe0708de050>", "add": "<function ReplayBuffer.add at 0x7fe0708de0e0>", "sample": "<function ReplayBuffer.sample at 0x7fe0708de170>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe0708de200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0708d6dc0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.04, "exploration_fraction": 0.11, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.04, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8mSEDhcZ+AhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/pHrhR64Ue4WUUpRoN0c/vCj1wo9cKYWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (125 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 268.3405285, "std_reward": 46.42407524573873, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-10T02:49:47.732517"}