--- license: apache-2.0 library_name: peft tags: - generated_from_trainer - mistral - text-generation - transformers - Inference Endpoints - pytorch - text-generation-inference base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: mental-health-mistral-7b-instructv0.2-finetuned-V2 results: [] datasets: - Amod/mental_health_counseling_conversations --- # mental-health-mistral-7b-instructv0.2-finetuned-V2 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) on the [mental_health_counseling_conversations](https://huggingface.co./datasets/Amod/mental_health_counseling_conversations) dataset. It achieves the following results on the evaluation set: - Loss: 0.6432 ## Model description A Mistral-7B-Instruct-v0.2 model finetuned on a corpus of mental health conversations between a psychologist and a user. The intention was to create a mental health assistant, "Connor", to address user questions based on responses from a psychologist. ## Training and evaluation data The model is finetuned on a corpus of mental health conversations between a psychologist and a client, in the form of context - response pairs. This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. Dataset found here :- * [Kaggle](https://www.kaggle.com/datasets/thedevastator/nlp-mental-health-conversations) * [Huggingface](https://huggingface.co./datasets/Amod/mental_health_counseling_conversations) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4325 | 1.0 | 352 | 0.9064 | | 1.2608 | 2.0 | 704 | 0.6956 | | 1.1845 | 3.0 | 1056 | 0.6432 | # Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftConfig, PeftModel base_model = "mistralai/Mistral-7B-Instruct-v0.2" adapter = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( base_model, add_bos_token=True, trust_remote_code=True, padding_side='left' ) # Create peft model using base_model and finetuned adapter config = PeftConfig.from_pretrained(adapter) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_4bit=True, device_map='auto', torch_dtype='auto') model = PeftModel.from_pretrained(model, adapter) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() # Prompt content: messages = [ {"role": "user", "content": "Hey Connor! I have been feeling a bit down lately.I could really use some advice on how to feel better?"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to(device) output_ids = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, pad_token_id=2) response = tokenizer.batch_decode(output_ids.detach().cpu().numpy(), skip_special_tokens = True) # Model response: print(response[0]) ``` ### Framework versions - PEFT 0.7.1 - Transformers 4.36.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0