--- license: apache-2.0 base_model: climatebert/distilroberta-base-climate-f tags: - generated_from_trainer model-index: - name: TAPP-multilabel-climatebert results: [] co2_eq_emissions: emissions: 23.3572576873636 source: codecarbon training_type: fine-tuning on_cloud: true cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.6747894287109 hours_used: 0.529 hardware_used: 1 x Tesla T4 datasets: - GIZ/policy_classification --- # TAPP-multilabel-climatebert This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co./climatebert/distilroberta-base-climate-f) on the [Policy-Classification](https://huggingface.co./datasets/GIZ/policy_classification) dataset. It achieves the following results on the evaluation set: *The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training* - Precision-micro: 0.7368 - Precision-samples: 0.7425 - Precision-weighted: 0.7469 - Recall-micro: 0.8044 - Recall-samples: 0.7744 - Recall-weighted: 0.8044 - F1-micro: 0.7691 - F1-samples: 0.7384 - F1-weighted: 0.7721 ## Model description The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict four labels - ActionLabel, PlansLabel, PolicyLabel, and TargetLabel - that are relevant to a particular task or application - **Target**: Targets are an intention to achieve a specific result, for example, to reduce GHG emissions to a specific level (a GHG target) or increase energy efficiency or renewable energy to a specific level (a non-GHG target), typically by a certain date. - **Action**: Actions are an intention to implement specific means of achieving GHG reductions, usually in forms of concrete projects. - **Policies**: Policies are domestic planning documents such as policies, regulations or guidlines. - **Plans**:Plans are broader than specific policies or actions, such as a general intention to ‘improve efficiency’, ‘develop renewable energy’, etc. *The terms come from the World Bank's NDC platform and WRI's publication* ## Intended uses & limitations More information needed ## Training and evaluation data - Training Dataset: 10031 | Class | Positive Count of Class| |:-------------|:--------| | Action | 5416 | | Plans | 2140 | | Policy | 1396| | Target | 2911 | - Validation Dataset: 932 | Class | Positive Count of Class| |:-------------|:--------| | Action | 513 | | Plans | 198 | | Policy | 122 | | Target | 256 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.06e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.7627 | 0.8 | 500 | 0.6471 | 0.6232 | 0.6727 | 0.6384 | 0.7989 | 0.7741 | 0.7989 | 0.7002 | 0.6929 | 0.7062 | | 0.5542 | 1.59 | 1000 | 0.6114 | 0.6393 | 0.6754 | 0.6671 | 0.8154 | 0.7833 | 0.8154 | 0.7167 | 0.6999 | 0.7279 | | 0.4219 | 2.39 | 1500 | 0.6145 | 0.7196 | 0.7236 | 0.7311 | 0.7989 | 0.7645 | 0.7989 | 0.7572 | 0.7231 | 0.7613 | | 0.3268 | 3.19 | 2000 | 0.6363 | 0.7272 | 0.7383 | 0.7358 | 0.8053 | 0.7738 | 0.8053 | 0.7643 | 0.7374 | 0.7672 | | 0.2477 | 3.99 | 2500 | 0.6509 | 0.7315 | 0.7351 | 0.7439 | 0.8007 | 0.7689 | 0.8007 | 0.7646 | 0.7319 | 0.7686 | | 0.1989 | 4.78 | 3000 | 0.6527 | 0.7368 | 0.7425 | 0.7469 | 0.8044 | 0.7744 | 0.8044 | 0.7691 | 0.7384 | 0.7721 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| |Action |0.828 |0.807 |0.817 | 513.0 | |Plans |0.560 |0.707 |0.625 | 198.0 | |Policy |0.727 |0.786 |0.756 | 122.0 | |Target |0.741 |0.886 |0.808 | 256.0 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.02335 kg of CO2 - **Hours Used**: 0.529 hours ### Training Hardware - **On Cloud**: yes - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2