GIZ
/

ppsingh commited on
Commit
a80a97c
1 Parent(s): 5765da4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -5
README.md CHANGED
@@ -6,6 +6,17 @@ tags:
6
  model-index:
7
  - name: TAPP-multilabel-bge
8
  results: []
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,9 +24,11 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # TAPP-multilabel-bge
15
 
16
- This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the None dataset.
 
 
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.9217
19
  - Precision-micro: 0.7772
20
  - Precision-samples: 0.7644
21
  - Precision-weighted: 0.7756
@@ -28,7 +41,16 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
 
 
 
 
 
 
 
 
32
 
33
  ## Intended uses & limitations
34
 
@@ -36,7 +58,21 @@ More information needed
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Training procedure
42
 
@@ -64,10 +100,16 @@ The following hyperparameters were used during training:
64
  | 0.0291 | 6.0 | 3762 | 0.8849 | 0.7773 | 0.7640 | 0.7776 | 0.8301 | 0.7890 | 0.8301 | 0.8028 | 0.7597 | 0.8027 |
65
  | 0.0147 | 7.0 | 4389 | 0.9217 | 0.7772 | 0.7644 | 0.7756 | 0.8329 | 0.7920 | 0.8329 | 0.8041 | 0.7609 | 0.8029 |
66
 
 
 
 
 
 
 
67
 
68
  ### Framework versions
69
 
70
  - Transformers 4.38.1
71
  - Pytorch 2.1.0+cu121
72
  - Datasets 2.18.0
73
- - Tokenizers 0.15.2
 
6
  model-index:
7
  - name: TAPP-multilabel-bge
8
  results: []
9
+ datasets:
10
+ - GIZ/policy_classification
11
+ co2_eq_emissions:
12
+ emissions: 71.4552917731392
13
+ source: codecarbon
14
+ training_type: fine-tuning
15
+ on_cloud: true
16
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.30GHz
17
+ ram_total_size: 12.6747894287109
18
+ hours_used: 1.36
19
+ hardware_used: 1 x Tesla T4
20
  ---
21
 
22
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
24
 
25
  # TAPP-multilabel-bge
26
 
27
+ This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset.
28
+
29
+ *The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training*
30
  It achieves the following results on the evaluation set:
31
+
32
  - Precision-micro: 0.7772
33
  - Precision-samples: 0.7644
34
  - Precision-weighted: 0.7756
 
41
 
42
  ## Model description
43
 
44
+ The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict four labels -
45
+ ActionLabel, PlansLabel, PolicyLabel, and TargetLabel - that are relevant to a particular task or application
46
+ - **Target**: Targets are an intention to achieve a specific result, for example, to reduce GHG emissions to a specific level
47
+ (a GHG target) or increase energy efficiency or renewable energy to a specific level (a non-GHG target), typically by
48
+ a certain date.
49
+ - **Action**: Actions are an intention to implement specific means of achieving GHG reductions, usually in forms of concrete projects.
50
+ - **Policies**: Policies are domestic planning documents such as policies, regulations or guidlines.
51
+ - **Plans**:Plans are broader than specific policies or actions, such as a general intention to ‘improve efficiency’, ‘develop renewable energy’, etc.
52
+
53
+ *The terms come from the World Bank's NDC platform and WRI's publication*
54
 
55
  ## Intended uses & limitations
56
 
 
58
 
59
  ## Training and evaluation data
60
 
61
+ - Training Dataset: 10031
62
+ | Class | Positive Count of Class|
63
+ |:-------------|:--------|
64
+ | Action | 5416 |
65
+ | Plans | 2140 |
66
+ | Policy | 1396|
67
+ | Target | 2911 |
68
+
69
+ - Validation Dataset: 932
70
+ | Class | Positive Count of Class|
71
+ |:-------------|:--------|
72
+ | Action | 513 |
73
+ | Plans | 198 |
74
+ | Policy | 122 |
75
+ | Target | 256 |
76
 
77
  ## Training procedure
78
 
 
100
  | 0.0291 | 6.0 | 3762 | 0.8849 | 0.7773 | 0.7640 | 0.7776 | 0.8301 | 0.7890 | 0.8301 | 0.8028 | 0.7597 | 0.8027 |
101
  | 0.0147 | 7.0 | 4389 | 0.9217 | 0.7772 | 0.7644 | 0.7756 | 0.8329 | 0.7920 | 0.8329 | 0.8041 | 0.7609 | 0.8029 |
102
 
103
+ |label | precision |recall |f1-score| support|
104
+ |:-------------:|:---------:|:-----:|:------:|:------:|
105
+ |Action |0.826 |0.883 |0.853 | 513.0 |
106
+ |Plans |0.653 |0.646 |0.649 | 198.0 |
107
+ |Policy |0.726 |0.803 |0.762 | 122.0 |
108
+ |Target |0.791 |0.890 |0.838 | 256.0 |
109
 
110
  ### Framework versions
111
 
112
  - Transformers 4.38.1
113
  - Pytorch 2.1.0+cu121
114
  - Datasets 2.18.0
115
+ - Tokenizers 0.15.2