--- license: mit base_model: BAAI/bge-base-en-v1.5 tags: - generated_from_trainer model-index: - name: CONDITIONAL-multilabel-bge results: [] --- # CONDITIONAL-multilabel-bge This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5295 - Precision-micro: 0.5138 - Precision-samples: 0.1866 - Precision-weighted: 0.5169 - Recall-micro: 0.7378 - Recall-samples: 0.1874 - Recall-weighted: 0.7378 - F1-micro: 0.6058 - F1-samples: 0.1852 - F1-weighted: 0.6065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.02e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.5361 | 1.0 | 369 | 0.4405 | 0.3405 | 0.1655 | 0.4102 | 0.6311 | 0.1622 | 0.6311 | 0.4423 | 0.1622 | 0.4503 | | 0.3692 | 2.0 | 738 | 0.3437 | 0.4631 | 0.1794 | 0.4929 | 0.6890 | 0.1761 | 0.6890 | 0.5539 | 0.1762 | 0.5604 | | 0.182 | 3.0 | 1107 | 0.3915 | 0.4702 | 0.1857 | 0.4871 | 0.7470 | 0.1891 | 0.7470 | 0.5771 | 0.1854 | 0.5800 | | 0.0757 | 4.0 | 1476 | 0.4713 | 0.4960 | 0.1882 | 0.4986 | 0.7530 | 0.1908 | 0.7530 | 0.5981 | 0.1877 | 0.5987 | | 0.0298 | 5.0 | 1845 | 0.4971 | 0.5161 | 0.1840 | 0.5184 | 0.7317 | 0.1857 | 0.7317 | 0.6053 | 0.1829 | 0.6058 | | 0.0152 | 6.0 | 2214 | 0.5295 | 0.5138 | 0.1866 | 0.5169 | 0.7378 | 0.1874 | 0.7378 | 0.6058 | 0.1852 | 0.6065 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2