--- license: mit base_model: BAAI/bge-base-en-v1.5 tags: - generated_from_trainer model-index: - name: CONDITIONAL-multilabel-bge results: [] datasets: - GIZ/policy_classification library_name: transformers pipeline_tag: text-classification co2_eq_emissions: emissions: 28.4522411264774 source: codecarbon training_type: fine-tuning on_cloud: true cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.6747894287109 hours_used: 0.702 hardware_used: 1 x Tesla T4 --- # CONDITIONAL-multilabel-bge This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co./datasets/GIZ/policy_classification) dataset. It achieves the following results on the evaluation set: - Loss: 0.5295 - Precision-micro: 0.5138 - Precision-samples: 0.1866 - Precision-weighted: 0.5169 - Recall-micro: 0.7378 - Recall-samples: 0.1874 - Recall-weighted: 0.7378 - F1-micro: 0.6058 - F1-samples: 0.1852 - F1-weighted: 0.6065 ## Model description The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels - ConditionalLabel, UnconditionalLabel - that are relevant to a particular task or application - **Conditional**: In context of climate policy documents if certain Target/Action/Plan/Policy commitment is being made conditionally. - **Unconditional**: In context of climate policy documents if certain Target/Action/Plan/Policy commitment is being made unconditionally. ## Intended uses & limitations The dataset sometimes does not include the sub-heading/heading which indicates that the paragraph belongs to Conditional/Unconditional category. But has been copied from the relevant document from those sub-headings. This makes the assessment of Conditonality very difficult. Annotator when given only the paragraph without the full long context had a difficulty in assessing the conditionality of commitments being made in paragraph. ## Training and evaluation data - Training Dataset: 5901 | Class | Positive Count of Class| |:-------------|:--------| | ConditionalLabel | 1986 | | UnconditionalLabel | 1312 | - Validation Dataset: 1190 | Class | Positive Count of Class| |:-------------|:--------| | ConditionalLabel | 192 | | UnconditionalLabel | 136 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.02e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.5361 | 1.0 | 369 | 0.4405 | 0.3405 | 0.1655 | 0.4102 | 0.6311 | 0.1622 | 0.6311 | 0.4423 | 0.1622 | 0.4503 | | 0.3692 | 2.0 | 738 | 0.3437 | 0.4631 | 0.1794 | 0.4929 | 0.6890 | 0.1761 | 0.6890 | 0.5539 | 0.1762 | 0.5604 | | 0.182 | 3.0 | 1107 | 0.3915 | 0.4702 | 0.1857 | 0.4871 | 0.7470 | 0.1891 | 0.7470 | 0.5771 | 0.1854 | 0.5800 | | 0.0757 | 4.0 | 1476 | 0.4713 | 0.4960 | 0.1882 | 0.4986 | 0.7530 | 0.1908 | 0.7530 | 0.5981 | 0.1877 | 0.5987 | | 0.0298 | 5.0 | 1845 | 0.4971 | 0.5161 | 0.1840 | 0.5184 | 0.7317 | 0.1857 | 0.7317 | 0.6053 | 0.1829 | 0.6058 | | 0.0152 | 6.0 | 2214 | 0.5295 | 0.5138 | 0.1866 | 0.5169 | 0.7378 | 0.1874 | 0.7378 | 0.6058 | 0.1852 | 0.6065 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| |ConditionalLabel |0.490 |0.760 |0.595 | 192.0 | |UnconditionalLabel |0.555 |0.706 | 0.621 | 136.0 | | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.02845 kg of CO2 - **Hours Used**: 0.702 hours ### Training Hardware - **On Cloud**: yes - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2