--- license: mit base_model: BAAI/bge-base-en-v1.5 tags: - generated_from_trainer model-index: - name: ADAPMIT-multilabel-bge results: [] datasets: - GIZ/policy_classification library_name: transformers co2_eq_emissions: emissions: 40.5174303026829 source: codecarbon training_type: fine-tuning on_cloud: true cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.6747894287109 hours_used: 0.994 hardware_used: 1 x Tesla T4 pipeline_tag: text-classification --- # ADAPMIT-multilabel-bge This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) on the on the [Policy-Classification](https://huggingface.co./datasets/GIZ/policy_classification) dataset. It achieves the following results on the evaluation set: - Loss: 0.3101 - Precision-micro: 0.9058 - Precision-samples: 0.8647 - Precision-weighted: 0.9058 - Recall-micro: 0.9305 - Recall-samples: 0.8693 - Recall-weighted: 0.9305 - F1-micro: 0.9180 - F1-samples: 0.8622 - F1-weighted: 0.9180 ## Model description The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels - AdaptationLabel, MitigationLabel - that are relevant to a particular task or application ## Intended uses & limitations More information needed ## Training and evaluation data - Training Dataset: 12538 | Class | Positive Count of Class| |:-------------|:--------| | AdaptationLabel | 5439 | | MitigationLabel | 6659 | - Validation Dataset: 1190 | Class | Positive Count of Class| |:-------------|:--------| | AdaptationLabel | 533 | | MitigationLabel | 604 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.08e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.3368 | 1.0 | 784 | 0.2917 | 0.8651 | 0.8450 | 0.8664 | 0.9138 | 0.8542 | 0.9138 | 0.8888 | 0.8437 | 0.8890 | | 0.1807 | 2.0 | 1568 | 0.2549 | 0.9092 | 0.8643 | 0.9094 | 0.9156 | 0.8571 | 0.9156 | 0.9124 | 0.8571 | 0.9123 | | 0.0955 | 3.0 | 2352 | 0.2988 | 0.9069 | 0.8660 | 0.9072 | 0.9252 | 0.8655 | 0.9252 | 0.9160 | 0.8613 | 0.9160 | | 0.0495 | 4.0 | 3136 | 0.3101 | 0.9058 | 0.8647 | 0.9058 | 0.9305 | 0.8693 | 0.9305 | 0.9180 | 0.8622 | 0.9180 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| |AdaptationLabel |0.910 |0.928 |0.919 | 533.0 | |MitigationLabel |0.902 |0.932 |0.917 | 604.0 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.04051 kg of CO2 - **Hours Used**: 0.994 hours ### Training Hardware - **On Cloud**: yes - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2