--- base_model: Qwen/Qwen2-7B #base_model: /workspace/data/models/Qwen2-7B library_name: peft tags: - generated_from_trainer model-index: - name: workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA results: [] --- If I thought I had no idea what I was doing with quantization, I REALLY have no idea what I’m doing with LORA Fine Tuning... This is my terrible attempt to instruct tune base Qwen2-7B, I haven't even tested this yet, I'll do that eventually... EDIT: Tested it for a bit, seems to actually work ok, not amazing, but actually not bad, I’ll do another once I learn more about instruct tuning... [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: /workspace/data/models/Qwen2-7B model_type: Qwen2ForCausalLM tokenizer_type: Qwen2Tokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: # - path: NobodyExistsOnTheInternet/ToxicQAFinal # type: sharegpt # - path: /workspace/data/SystemChat_filtered_sharegpt.jsonl # type: sharegpt # conversation: chatml - path: /workspace/data/Opus_Instruct-v2-6.5K-Filtered-v2.json type: field_system: system field_instruction: prompt field_output: response format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" # - path: Undi95/orthogonal-activation-steering-TOXIC # type: # field_instruction: goal # field_output: target # format: "[INST] {instruction} [/INST]" # no_input_format: "[INST] {instruction} [/INST]" # split: test - path: cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered type: alpaca split: train dataset_prepared_path: /workspace/data/last_run_prepared val_set_size: 0.15 output_dir: /workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA chat_template: chatml sequence_len: 8192 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 3e-5 train_on_inputs: false group_by_length: true bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 4 debug: deepspeed: weight_decay: 0.05 fsdp: fsdp_config: special_tokens: pad_token: "<|endoftext|>" eos_token: "<|im_end|>" ```

# workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6232 | 0.0027 | 1 | 0.6296 | | 0.5602 | 0.2499 | 91 | 0.5246 | | 0.4773 | 0.4998 | 182 | 0.5155 | | 0.4375 | 0.7497 | 273 | 0.5116 | | 0.6325 | 0.9997 | 364 | 0.5092 | | 0.4385 | 1.2382 | 455 | 0.5073 | | 0.4949 | 1.4882 | 546 | 0.5061 | | 0.503 | 1.7381 | 637 | 0.5052 | | 0.5023 | 1.9880 | 728 | 0.5046 | | 0.3737 | 2.2238 | 819 | 0.5041 | | 0.505 | 2.4737 | 910 | 0.5039 | | 0.4833 | 2.7237 | 1001 | 0.5038 | | 0.4986 | 2.9736 | 1092 | 0.5037 | | 0.5227 | 3.2108 | 1183 | 0.5037 | | 0.5723 | 3.4607 | 1274 | 0.5037 | | 0.4692 | 3.7106 | 1365 | 0.5037 | | 0.5222 | 3.9605 | 1456 | 0.5037 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1