File size: 5,047 Bytes
29e7e27 69b3204 29e7e27 6cb4afe bfeeb01 6cb4afe 29e7e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
base_model: Qwen/Qwen2-7B
library_name: peft
tags:
- generated_from_trainer
model-index:
- name: workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA
results: []
datasets:
- Sao10K/Claude-3-Opus-Instruct-15K
- cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered
---
If I thought I had no idea what I was doing with quantization, I REALLY have no idea what I’m doing with LORA Fine Tuning... This is my terrible attempt to instruct tune base Qwen2-7B, I haven't even tested this yet, I'll do that eventually...
EDIT: Tested it for a bit, seems to actually work ok, not amazing, but actually not bad, I’ll do another once I learn more about instruct tuning...
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: /workspace/data/models/Qwen2-7B
model_type: Qwen2ForCausalLM
tokenizer_type: Qwen2Tokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
# - path: NobodyExistsOnTheInternet/ToxicQAFinal
# type: sharegpt
# - path: /workspace/data/SystemChat_filtered_sharegpt.jsonl
# type: sharegpt
# conversation: chatml
- path: /workspace/data/Opus_Instruct-v2-6.5K-Filtered-v2.json
type:
field_system: system
field_instruction: prompt
field_output: response
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
# - path: Undi95/orthogonal-activation-steering-TOXIC
# type:
# field_instruction: goal
# field_output: target
# format: "[INST] {instruction} [/INST]"
# no_input_format: "[INST] {instruction} [/INST]"
# split: test
- path: cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered
type: alpaca
split: train
dataset_prepared_path: /workspace/data/last_run_prepared
val_set_size: 0.15
output_dir: /workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA
chat_template: chatml
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 3e-5
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed:
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|endoftext|>"
eos_token: "<|im_end|>"
```
</details><br>
# workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5037
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6232 | 0.0027 | 1 | 0.6296 |
| 0.5602 | 0.2499 | 91 | 0.5246 |
| 0.4773 | 0.4998 | 182 | 0.5155 |
| 0.4375 | 0.7497 | 273 | 0.5116 |
| 0.6325 | 0.9997 | 364 | 0.5092 |
| 0.4385 | 1.2382 | 455 | 0.5073 |
| 0.4949 | 1.4882 | 546 | 0.5061 |
| 0.503 | 1.7381 | 637 | 0.5052 |
| 0.5023 | 1.9880 | 728 | 0.5046 |
| 0.3737 | 2.2238 | 819 | 0.5041 |
| 0.505 | 2.4737 | 910 | 0.5039 |
| 0.4833 | 2.7237 | 1001 | 0.5038 |
| 0.4986 | 2.9736 | 1092 | 0.5037 |
| 0.5227 | 3.2108 | 1183 | 0.5037 |
| 0.5723 | 3.4607 | 1274 | 0.5037 |
| 0.4692 | 3.7106 | 1365 | 0.5037 |
| 0.5222 | 3.9605 | 1456 | 0.5037 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |