PEFT
Safetensors
qwen2
Generated from Trainer
File size: 5,047 Bytes
29e7e27
 
 
 
 
 
 
 
69b3204
 
 
29e7e27
 
6cb4afe
bfeeb01
6cb4afe
29e7e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
base_model: Qwen/Qwen2-7B
library_name: peft
tags:
- generated_from_trainer
model-index:
- name: workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA
  results: []
datasets:
- Sao10K/Claude-3-Opus-Instruct-15K
- cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered
---

If I thought I had no idea what I was doing with quantization, I REALLY have no idea what I’m doing with LORA Fine Tuning... This is my terrible attempt to instruct tune base Qwen2-7B, I haven't even tested this yet, I'll do that eventually...

EDIT: Tested it for a bit, seems to actually work ok, not amazing, but actually not bad, I’ll do another once I learn more about instruct tuning...
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: /workspace/data/models/Qwen2-7B
model_type: Qwen2ForCausalLM
tokenizer_type: Qwen2Tokenizer

trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
#  - path: NobodyExistsOnTheInternet/ToxicQAFinal
#    type: sharegpt
#  - path: /workspace/data/SystemChat_filtered_sharegpt.jsonl
#    type: sharegpt
#    conversation: chatml
  - path: /workspace/data/Opus_Instruct-v2-6.5K-Filtered-v2.json
    type:
      field_system: system
      field_instruction: prompt
      field_output: response
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
#  - path: Undi95/orthogonal-activation-steering-TOXIC
#    type:
#      field_instruction: goal
#      field_output: target
#      format: "[INST] {instruction} [/INST]"
#      no_input_format: "[INST] {instruction} [/INST]"
#    split: test
  - path: cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered
    type: alpaca
    split: train

dataset_prepared_path: /workspace/data/last_run_prepared
val_set_size: 0.15
output_dir: /workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA

chat_template: chatml

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 3e-5

train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed:
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
  pad_token: "<|endoftext|>"
  eos_token: "<|im_end|>"
```

</details><br>

# workspace/data/outputs/Qwen2-7B-TestInstructFinetune-LORA

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5037

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6232        | 0.0027 | 1    | 0.6296          |
| 0.5602        | 0.2499 | 91   | 0.5246          |
| 0.4773        | 0.4998 | 182  | 0.5155          |
| 0.4375        | 0.7497 | 273  | 0.5116          |
| 0.6325        | 0.9997 | 364  | 0.5092          |
| 0.4385        | 1.2382 | 455  | 0.5073          |
| 0.4949        | 1.4882 | 546  | 0.5061          |
| 0.503         | 1.7381 | 637  | 0.5052          |
| 0.5023        | 1.9880 | 728  | 0.5046          |
| 0.3737        | 2.2238 | 819  | 0.5041          |
| 0.505         | 2.4737 | 910  | 0.5039          |
| 0.4833        | 2.7237 | 1001 | 0.5038          |
| 0.4986        | 2.9736 | 1092 | 0.5037          |
| 0.5227        | 3.2108 | 1183 | 0.5037          |
| 0.5723        | 3.4607 | 1274 | 0.5037          |
| 0.4692        | 3.7106 | 1365 | 0.5037          |
| 0.5222        | 3.9605 | 1456 | 0.5037          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1