Upload generate_model_grid.py
Browse filesThe most recent version, uses checkbox grid
- generate_model_grid.py +299 -0
generate_model_grid.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from copy import copy
|
3 |
+
from itertools import permutations, chain
|
4 |
+
import random
|
5 |
+
import csv
|
6 |
+
from io import StringIO
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
|
11 |
+
import modules.scripts as scripts
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
from modules import images, sd_samplers
|
15 |
+
from modules.hypernetworks import hypernetwork
|
16 |
+
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
|
17 |
+
from modules.shared import opts, cmd_opts, state
|
18 |
+
import modules.shared as shared
|
19 |
+
import modules.sd_samplers
|
20 |
+
import modules.sd_models
|
21 |
+
import re
|
22 |
+
|
23 |
+
|
24 |
+
def apply_field(field):
|
25 |
+
def fun(p, x, xs):
|
26 |
+
setattr(p, field, x)
|
27 |
+
|
28 |
+
return fun
|
29 |
+
|
30 |
+
|
31 |
+
def apply_prompt(p, x, xs):
|
32 |
+
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
|
33 |
+
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
|
34 |
+
|
35 |
+
p.prompt = p.prompt.replace(xs[0], x)
|
36 |
+
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
|
37 |
+
|
38 |
+
def edit_prompt(p,x,z):
|
39 |
+
p.prompt = z + " " + x
|
40 |
+
|
41 |
+
|
42 |
+
def apply_order(p, x, xs):
|
43 |
+
token_order = []
|
44 |
+
|
45 |
+
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
|
46 |
+
for token in x:
|
47 |
+
token_order.append((p.prompt.find(token), token))
|
48 |
+
|
49 |
+
token_order.sort(key=lambda t: t[0])
|
50 |
+
|
51 |
+
prompt_parts = []
|
52 |
+
|
53 |
+
# Split the prompt up, taking out the tokens
|
54 |
+
for _, token in token_order:
|
55 |
+
n = p.prompt.find(token)
|
56 |
+
prompt_parts.append(p.prompt[0:n])
|
57 |
+
p.prompt = p.prompt[n + len(token):]
|
58 |
+
|
59 |
+
# Rebuild the prompt with the tokens in the order we want
|
60 |
+
prompt_tmp = ""
|
61 |
+
for idx, part in enumerate(prompt_parts):
|
62 |
+
prompt_tmp += part
|
63 |
+
prompt_tmp += x[idx]
|
64 |
+
p.prompt = prompt_tmp + p.prompt
|
65 |
+
|
66 |
+
|
67 |
+
def build_samplers_dict():
|
68 |
+
samplers_dict = {}
|
69 |
+
for i, sampler in enumerate(sd_samplers.all_samplers):
|
70 |
+
samplers_dict[sampler.name.lower()] = i
|
71 |
+
for alias in sampler.aliases:
|
72 |
+
samplers_dict[alias.lower()] = i
|
73 |
+
return samplers_dict
|
74 |
+
|
75 |
+
|
76 |
+
def apply_sampler(p, x, xs):
|
77 |
+
sampler_index = build_samplers_dict().get(x.lower(), None)
|
78 |
+
if sampler_index is None:
|
79 |
+
raise RuntimeError(f"Unknown sampler: {x}")
|
80 |
+
|
81 |
+
p.sampler_index = sampler_index
|
82 |
+
|
83 |
+
|
84 |
+
def confirm_samplers(p, xs):
|
85 |
+
samplers_dict = build_samplers_dict()
|
86 |
+
for x in xs:
|
87 |
+
if x.lower() not in samplers_dict.keys():
|
88 |
+
raise RuntimeError(f"Unknown sampler: {x}")
|
89 |
+
|
90 |
+
|
91 |
+
def apply_checkpoint(p, x, xs):
|
92 |
+
info = modules.sd_models.get_closet_checkpoint_match(x)
|
93 |
+
if info is None:
|
94 |
+
raise RuntimeError(f"Unknown checkpoint: {x}")
|
95 |
+
modules.sd_models.reload_model_weights(shared.sd_model, info)
|
96 |
+
p.sd_model = shared.sd_model
|
97 |
+
|
98 |
+
|
99 |
+
def confirm_checkpoints(p, xs):
|
100 |
+
for x in xs:
|
101 |
+
if modules.sd_models.get_closet_checkpoint_match(x) is None:
|
102 |
+
raise RuntimeError(f"Unknown checkpoint: {x}")
|
103 |
+
|
104 |
+
|
105 |
+
def apply_hypernetwork(p, x, xs):
|
106 |
+
if x.lower() in ["", "none"]:
|
107 |
+
name = None
|
108 |
+
else:
|
109 |
+
name = hypernetwork.find_closest_hypernetwork_name(x)
|
110 |
+
if not name:
|
111 |
+
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
112 |
+
hypernetwork.load_hypernetwork(name)
|
113 |
+
|
114 |
+
|
115 |
+
def apply_hypernetwork_strength(p, x, xs):
|
116 |
+
hypernetwork.apply_strength(x)
|
117 |
+
|
118 |
+
|
119 |
+
def confirm_hypernetworks(p, xs):
|
120 |
+
for x in xs:
|
121 |
+
if x.lower() in ["", "none"]:
|
122 |
+
continue
|
123 |
+
if not hypernetwork.find_closest_hypernetwork_name(x):
|
124 |
+
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
125 |
+
|
126 |
+
|
127 |
+
def apply_clip_skip(p, x, xs):
|
128 |
+
opts.data["CLIP_stop_at_last_layers"] = x
|
129 |
+
|
130 |
+
|
131 |
+
def format_value_add_label(p, opt, x):
|
132 |
+
if type(x) == float:
|
133 |
+
x = round(x, 8)
|
134 |
+
|
135 |
+
return f"{opt.label}: {x}"
|
136 |
+
|
137 |
+
|
138 |
+
def format_value(p, opt, x):
|
139 |
+
if type(x) == float:
|
140 |
+
x = round(x, 8)
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
def format_value_join_list(p, opt, x):
|
145 |
+
return ", ".join(x)
|
146 |
+
|
147 |
+
|
148 |
+
def do_nothing(p, x, xs):
|
149 |
+
pass
|
150 |
+
|
151 |
+
|
152 |
+
def format_nothing(p, opt, x):
|
153 |
+
return ""
|
154 |
+
|
155 |
+
|
156 |
+
def str_permutations(x):
|
157 |
+
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
|
158 |
+
return x
|
159 |
+
|
160 |
+
# AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
|
161 |
+
# AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
|
162 |
+
|
163 |
+
|
164 |
+
def draw_xy_grid(p, xs, ys, zs, x_labels, y_labels, cell, draw_legend, include_lone_images):
|
165 |
+
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
166 |
+
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
167 |
+
|
168 |
+
# Temporary list of all the images that are generated to be populated into the grid.
|
169 |
+
# Will be filled with empty images for any individual step that fails to process properly
|
170 |
+
image_cache = []
|
171 |
+
|
172 |
+
processed_result = None
|
173 |
+
cell_mode = "P"
|
174 |
+
cell_size = (1,1)
|
175 |
+
|
176 |
+
state.job_count = len(xs) * len(ys) * p.n_iter
|
177 |
+
|
178 |
+
for iy, y in enumerate(ys):
|
179 |
+
for ix, x in enumerate(xs):
|
180 |
+
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
|
181 |
+
z = zs[iy]
|
182 |
+
processed:Processed = cell(x, y, z)
|
183 |
+
try:
|
184 |
+
# this dereference will throw an exception if the image was not processed
|
185 |
+
# (this happens in cases such as if the user stops the process from the UI)
|
186 |
+
processed_image = processed.images[0]
|
187 |
+
|
188 |
+
if processed_result is None:
|
189 |
+
# Use our first valid processed result as a template container to hold our full results
|
190 |
+
processed_result = copy(processed)
|
191 |
+
cell_mode = processed_image.mode
|
192 |
+
cell_size = processed_image.size
|
193 |
+
processed_result.images = [Image.new(cell_mode, cell_size)]
|
194 |
+
|
195 |
+
image_cache.append(processed_image)
|
196 |
+
if include_lone_images:
|
197 |
+
processed_result.images.append(processed_image)
|
198 |
+
processed_result.all_prompts.append(processed.prompt)
|
199 |
+
processed_result.all_seeds.append(processed.seed)
|
200 |
+
processed_result.infotexts.append(processed.infotexts[0])
|
201 |
+
except:
|
202 |
+
image_cache.append(Image.new(cell_mode, cell_size))
|
203 |
+
|
204 |
+
if not processed_result:
|
205 |
+
print("Unexpected error: draw_xy_grid failed to return even a single processed image")
|
206 |
+
return Processed()
|
207 |
+
|
208 |
+
grid = images.image_grid(image_cache, rows=len(ys))
|
209 |
+
if draw_legend:
|
210 |
+
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
|
211 |
+
|
212 |
+
processed_result.images[0] = grid
|
213 |
+
|
214 |
+
return processed_result
|
215 |
+
|
216 |
+
|
217 |
+
class SharedSettingsStackHelper(object):
|
218 |
+
def __enter__(self):
|
219 |
+
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
|
220 |
+
self.hypernetwork = opts.sd_hypernetwork
|
221 |
+
self.model = shared.sd_model
|
222 |
+
|
223 |
+
def __exit__(self, exc_type, exc_value, tb):
|
224 |
+
modules.sd_models.reload_model_weights(self.model)
|
225 |
+
|
226 |
+
hypernetwork.load_hypernetwork(self.hypernetwork)
|
227 |
+
hypernetwork.apply_strength()
|
228 |
+
|
229 |
+
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
|
230 |
+
|
231 |
+
|
232 |
+
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
233 |
+
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
|
234 |
+
|
235 |
+
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
|
236 |
+
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
|
237 |
+
|
238 |
+
class Script(scripts.Script):
|
239 |
+
def title(self):
|
240 |
+
return "Generate Model Grid"
|
241 |
+
|
242 |
+
def ui(self, is_img2img):
|
243 |
+
filenames = []
|
244 |
+
dirpath = '/content/stable-diffusion-webui/models/Stable-diffusion/'
|
245 |
+
for path in os.listdir(dirpath):
|
246 |
+
if path.endswith('.ckpt'):
|
247 |
+
filenames.append(path)
|
248 |
+
|
249 |
+
with gr.Row():
|
250 |
+
x_values = gr.Textbox(label="Prompts, separated with &", lines=1)
|
251 |
+
|
252 |
+
with gr.Row():
|
253 |
+
y_values = gr.CheckboxGroup(filenames, label="Checkpoint file names, including file ending", lines=1)
|
254 |
+
|
255 |
+
with gr.Row():
|
256 |
+
z_values = gr.Textbox(label="Model tokens", lines=1)
|
257 |
+
|
258 |
+
draw_legend = gr.Checkbox(label='Draw legend', value=True)
|
259 |
+
include_lone_images = gr.Checkbox(label='Include Separate Images', value=False)
|
260 |
+
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
|
261 |
+
|
262 |
+
return [x_values, y_values, z_values, draw_legend, include_lone_images, no_fixed_seeds]
|
263 |
+
|
264 |
+
def run(self, p, x_values, y_values, z_values, draw_legend, include_lone_images, no_fixed_seeds):
|
265 |
+
if not no_fixed_seeds:
|
266 |
+
modules.processing.fix_seed(p)
|
267 |
+
|
268 |
+
if not opts.return_grid:
|
269 |
+
p.batch_size = 1
|
270 |
+
|
271 |
+
xs = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(x_values), delimiter='&'))]
|
272 |
+
ys = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(y_values)))]
|
273 |
+
zs = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(z_values)))]
|
274 |
+
|
275 |
+
def cell(x, y, z):
|
276 |
+
pc = copy(p)
|
277 |
+
edit_prompt(pc, x, z)
|
278 |
+
confirm_checkpoints(pc,ys)
|
279 |
+
apply_checkpoint(pc, y, ys)
|
280 |
+
|
281 |
+
return process_images(pc)
|
282 |
+
|
283 |
+
with SharedSettingsStackHelper():
|
284 |
+
processed = draw_xy_grid(
|
285 |
+
p,
|
286 |
+
xs=xs,
|
287 |
+
ys=ys,
|
288 |
+
zs=zs,
|
289 |
+
x_labels=xs,
|
290 |
+
y_labels=ys,
|
291 |
+
cell=cell,
|
292 |
+
draw_legend=draw_legend,
|
293 |
+
include_lone_images=include_lone_images
|
294 |
+
)
|
295 |
+
|
296 |
+
if opts.grid_save:
|
297 |
+
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p)
|
298 |
+
|
299 |
+
return processed
|