seungahdev
commited on
Commit
•
37a2934
1
Parent(s):
9dd7ac8
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: mistralai/Mixtral-8x22B-Instruct-v0.1
|
4 |
+
inference: false
|
5 |
+
model_link: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
|
6 |
+
model_name: mistralai/Mixtral-8x22B-Instruct-v0.1
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
quantized_by: FriendliAI
|
9 |
+
tags:
|
10 |
+
- pretrained
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- header start -->
|
14 |
+
<p align="center">
|
15 |
+
<img src="https://i.imgur.com/mNM6Cai.png" width="100%" alt="Friendli Logo">
|
16 |
+
</p>
|
17 |
+
<!-- header end -->
|
18 |
+
|
19 |
+
# Mixtral-8x22B-Instruct-v0.1 - FP8
|
20 |
+
|
21 |
+
- Model creator: [Mistral AI](https://huggingface.co/mistralai)
|
22 |
+
- Original model: [Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
|
23 |
+
|
24 |
+
## Description
|
25 |
+
|
26 |
+
This repo contains the Mixtral-8x22B-Instruct-v0.1 model quantized to FP8 by FriendliAI, significantly enhancing its inference efficiency while maintaining high accuracy.
|
27 |
+
Note that FP8 is only supported by NVIDIA Ada, Hopper, and Blackwell GPU architectures.
|
28 |
+
Check out [FriendliAI documentation](https://docs.friendli.ai/) for more details.
|
29 |
+
|
30 |
+
## Compatibility
|
31 |
+
|
32 |
+
This model is compatible with **[Friendli Container](https://friendli.ai/products/container/)**.
|
33 |
+
|
34 |
+
## Prerequisites
|
35 |
+
|
36 |
+
- Before you begin, make sure you have signed up for [Friendli Suite](https://suite.friendli.ai/). **You can use Friendli Containers free of charge for four weeks.**
|
37 |
+
- Prepare a Personal Access Token following [this guide](#preparing-personal-access-token).
|
38 |
+
- Prepare a Friendli Container Secret following [this guide](#preparing-container-secret).
|
39 |
+
|
40 |
+
### Preparing Personal Access Token
|
41 |
+
|
42 |
+
PAT (Personal Access Token) is the user credential for for logging into our container registry.
|
43 |
+
|
44 |
+
1. Sign in [Friendli Suite](https://suite.friendli.ai/).
|
45 |
+
2. Go to **[User Settings > Tokens](https://suite.friendli.ai/user-settings/tokens)** and click **'Create new token'**.
|
46 |
+
3. Save your created token value.
|
47 |
+
|
48 |
+
### Pulling Friendli Container Image
|
49 |
+
|
50 |
+
1. Log in to the Docker client using the personal access token created as outlined in [this guide](#preparing-personal-access-token).
|
51 |
+
|
52 |
+
```sh
|
53 |
+
export FRIENDLI_PAT="YOUR PAT"
|
54 |
+
docker login registry.friendli.ai -u $YOUR_EMAIL -p $FRIENDLI_PAT
|
55 |
+
```
|
56 |
+
|
57 |
+
2. Pull image
|
58 |
+
|
59 |
+
```sh
|
60 |
+
docker pull registry.friendli.ai/trial
|
61 |
+
```
|
62 |
+
|
63 |
+
## Running Friendli Container
|
64 |
+
|
65 |
+
Once you've prepared the image of Friendli Container, you can launch it to create a serving endpoint.
|
66 |
+
|
67 |
+
```sh
|
68 |
+
docker run \
|
69 |
+
--gpus '"device=0,1,2,3"' \
|
70 |
+
-p 8000:8000 \
|
71 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
72 |
+
-e FRIENDLI_CONTAINER_SECRET="YOUR CONTAINER SECRET" \
|
73 |
+
registry.friendli.ai/trial \
|
74 |
+
--web-server-port 8000 \
|
75 |
+
--hf-model-name FriendliAI/Mixtral-8x22B-Instruct-v0.1-fp8
|
76 |
+
```
|
77 |
+
|
78 |
+
### Optimizing Inference Performance with Policy Search
|
79 |
+
|
80 |
+
To serve MoE models efficiently, it is required to run a policy search to explore the optimal execution policy:
|
81 |
+
|
82 |
+
```sh
|
83 |
+
export POLICY_DIR=$PWD/policy
|
84 |
+
|
85 |
+
mkdir -p $POLICY_DIR
|
86 |
+
|
87 |
+
docker run \
|
88 |
+
--gpus '"device=0,1,2,3"' \
|
89 |
+
-p 8000:8000 \
|
90 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
91 |
+
-v $POLICY_DIR:/policy \
|
92 |
+
-e FRIENDLI_CONTAINER_SECRET="YOUR CONTAINER SECRET" \
|
93 |
+
registry.friendli.ai/trial \
|
94 |
+
--web-server-port 8000 \
|
95 |
+
--hf-model-name FriendliAI/Mixtral-8x22B-Instruct-v0.1-fp8 \
|
96 |
+
--algo-policy-dir /policy \
|
97 |
+
--search-policy true
|
98 |
+
```
|
99 |
+
|
100 |
+
When the optimal policy is successfully searched, the policy is compiled into a policy file and saved at `$POLICY_DIR`.
|
101 |
+
Now you can create an inference endpoint with this optimal policy as follows:
|
102 |
+
|
103 |
+
```sh
|
104 |
+
docker run \
|
105 |
+
--gpus '"device=0,1,2,3"' \
|
106 |
+
-p 8000:8000 \
|
107 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
108 |
+
-v $POLICY_DIR:/policy \
|
109 |
+
-e FRIENDLI_CONTAINER_SECRET="YOUR CONTAINER SECRET" \
|
110 |
+
registry.friendli.ai/trial \
|
111 |
+
--web-server-port 8000 \
|
112 |
+
--hf-model-name FriendliAI/Mixtral-8x22B-Instruct-v0.1-fp8 \
|
113 |
+
--algo-policy-dir /policy
|
114 |
+
```
|
115 |
+
|
116 |
+
---
|
117 |
+
|
118 |
+
# Original model card: MistralAI's Mixtral-8x22B-Instruct v0.1
|
119 |
+
|
120 |
+
# Model Card for Mixtral-8x22B-Instruct-v0.1
|
121 |
+
The Mixtral-8x22B-Instruct-v0.1 Large Language Model (LLM) is an instruct fine-tuned version of the [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1).
|
122 |
+
|
123 |
+
## Run the model
|
124 |
+
```python
|
125 |
+
from transformers import AutoModelForCausalLM
|
126 |
+
from mistral_common.protocol.instruct.messages import (
|
127 |
+
AssistantMessage,
|
128 |
+
UserMessage,
|
129 |
+
)
|
130 |
+
from mistral_common.protocol.instruct.tool_calls import (
|
131 |
+
Tool,
|
132 |
+
Function,
|
133 |
+
)
|
134 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
135 |
+
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
|
136 |
+
|
137 |
+
device = "cuda" # the device to load the model onto
|
138 |
+
|
139 |
+
tokenizer_v3 = MistralTokenizer.v3()
|
140 |
+
|
141 |
+
mistral_query = ChatCompletionRequest(
|
142 |
+
tools=[
|
143 |
+
Tool(
|
144 |
+
function=Function(
|
145 |
+
name="get_current_weather",
|
146 |
+
description="Get the current weather",
|
147 |
+
parameters={
|
148 |
+
"type": "object",
|
149 |
+
"properties": {
|
150 |
+
"location": {
|
151 |
+
"type": "string",
|
152 |
+
"description": "The city and state, e.g. San Francisco, CA",
|
153 |
+
},
|
154 |
+
"format": {
|
155 |
+
"type": "string",
|
156 |
+
"enum": ["celsius", "fahrenheit"],
|
157 |
+
"description": "The temperature unit to use. Infer this from the users location.",
|
158 |
+
},
|
159 |
+
},
|
160 |
+
"required": ["location", "format"],
|
161 |
+
},
|
162 |
+
)
|
163 |
+
)
|
164 |
+
],
|
165 |
+
messages=[
|
166 |
+
UserMessage(content="What's the weather like today in Paris"),
|
167 |
+
],
|
168 |
+
model="test",
|
169 |
+
)
|
170 |
+
|
171 |
+
encodeds = tokenizer_v3.encode_chat_completion(mistral_query).tokens
|
172 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x22B-Instruct-v0.1")
|
173 |
+
model_inputs = encodeds.to(device)
|
174 |
+
model.to(device)
|
175 |
+
|
176 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
177 |
+
sp_tokenizer = tokenizer_v3.instruct_tokenizer.tokenizer
|
178 |
+
decoded = sp_tokenizer.decode(generated_ids[0])
|
179 |
+
print(decoded)
|
180 |
+
```
|
181 |
+
Alternatively, you can run this example with the Hugging Face tokenizer.
|
182 |
+
To use this example, you'll need transformers version 4.39.0 or higher.
|
183 |
+
```console
|
184 |
+
pip install transformers==4.39.0
|
185 |
+
```
|
186 |
+
```python
|
187 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
188 |
+
|
189 |
+
model_id = "mistralai/Mixtral-8x22B-Instruct-v0.1"
|
190 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
191 |
+
conversation=[
|
192 |
+
{"role": "user", "content": "What's the weather like in Paris?"},
|
193 |
+
{
|
194 |
+
"role": "tool_calls",
|
195 |
+
"content": [
|
196 |
+
{
|
197 |
+
"name": "get_current_weather",
|
198 |
+
"arguments": {"location": "Paris, France", "format": "celsius"},
|
199 |
+
|
200 |
+
}
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"role": "tool_results",
|
205 |
+
"content": {"content": 22}
|
206 |
+
},
|
207 |
+
{"role": "assistant", "content": "The current temperature in Paris, France is 22 degrees Celsius."},
|
208 |
+
{"role": "user", "content": "What about San Francisco?"}
|
209 |
+
]
|
210 |
+
|
211 |
+
|
212 |
+
tools = [{"type": "function", "function": {"name":"get_current_weather", "description": "Get▁the▁current▁weather", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "format": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location."}},"required":["location","format"]}}}]
|
213 |
+
|
214 |
+
# render the tool use prompt as a string:
|
215 |
+
tool_use_prompt = tokenizer.apply_chat_template(
|
216 |
+
conversation,
|
217 |
+
chat_template="tool_use",
|
218 |
+
tools=tools,
|
219 |
+
tokenize=False,
|
220 |
+
add_generation_prompt=True,
|
221 |
+
|
222 |
+
)
|
223 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x22B-Instruct-v0.1")
|
224 |
+
|
225 |
+
inputs = tokenizer(tool_use_prompt, return_tensors="pt")
|
226 |
+
|
227 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
228 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
229 |
+
```
|
230 |
+
|
231 |
+
# Instruct tokenizer
|
232 |
+
The HuggingFace tokenizer included in this release should match our own. To compare:
|
233 |
+
`pip install mistral-common`
|
234 |
+
|
235 |
+
```py
|
236 |
+
from mistral_common.protocol.instruct.messages import (
|
237 |
+
AssistantMessage,
|
238 |
+
UserMessage,
|
239 |
+
)
|
240 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
241 |
+
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
|
242 |
+
|
243 |
+
from transformers import AutoTokenizer
|
244 |
+
|
245 |
+
tokenizer_v3 = MistralTokenizer.v3()
|
246 |
+
|
247 |
+
mistral_query = ChatCompletionRequest(
|
248 |
+
messages=[
|
249 |
+
UserMessage(content="How many experts ?"),
|
250 |
+
AssistantMessage(content="8"),
|
251 |
+
UserMessage(content="How big ?"),
|
252 |
+
AssistantMessage(content="22B"),
|
253 |
+
UserMessage(content="Noice 🎉 !"),
|
254 |
+
],
|
255 |
+
model="test",
|
256 |
+
)
|
257 |
+
hf_messages = mistral_query.model_dump()['messages']
|
258 |
+
|
259 |
+
tokenized_mistral = tokenizer_v3.encode_chat_completion(mistral_query).tokens
|
260 |
+
|
261 |
+
tokenizer_hf = AutoTokenizer.from_pretrained('mistralai/Mixtral-8x22B-Instruct-v0.1')
|
262 |
+
tokenized_hf = tokenizer_hf.apply_chat_template(hf_messages, tokenize=True)
|
263 |
+
|
264 |
+
assert tokenized_hf == tokenized_mistral
|
265 |
+
```
|
266 |
+
|
267 |
+
# Function calling and special tokens
|
268 |
+
This tokenizer includes more special tokens, related to function calling :
|
269 |
+
- [TOOL_CALLS]
|
270 |
+
- [AVAILABLE_TOOLS]
|
271 |
+
- [/AVAILABLE_TOOLS]
|
272 |
+
- [TOOL_RESULTS]
|
273 |
+
- [/TOOL_RESULTS]
|
274 |
+
|
275 |
+
If you want to use this model with function calling, please be sure to apply it similarly to what is done in our [SentencePieceTokenizerV3](https://github.com/mistralai/mistral-common/blob/main/src/mistral_common/tokens/tokenizers/sentencepiece.py#L299).
|
276 |
+
|
277 |
+
# The Mistral AI Team
|
278 |
+
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux,
|
279 |
+
Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,
|
280 |
+
Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot,
|
281 |
+
Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger,
|
282 |
+
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona,
|
283 |
+
Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon,
|
284 |
+
Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat,
|
285 |
+
Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen,
|
286 |
+
Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao,
|
287 |
+
Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang,
|
288 |
+
Valera Nemychnikova, William El Sayed, William Marshall
|