Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,42 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- FreedomIntelligence/RAG-Instruct
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
base_model:
|
10 |
+
- meta-llama/Llama-3.1-8B
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
---
|
13 |
+
## ⚡ Introduction
|
14 |
+
|
15 |
+
[RAG-Instruct](https://arxiv.org/abs/2501.00353) is a method for generating diverse and high-quality RAG instruction data. It synthesizes instruction datasets based on any source corpus, leveraging the following approaches:
|
16 |
+
|
17 |
+
- **Five RAG paradigms**, which represent diverse query-document relationships to enhance model generalization across tasks.
|
18 |
+
- **Instruction simulation**, which enriches instruction diversity and quality by utilizing the strengths of existing instruction datasets.
|
19 |
+
|
20 |
+
Using this approach, we constructed a 40K instruction dataset from Wikipedia, covering a wide range of RAG scenarios and tasks.
|
21 |
+
Our RAG-Instruct significantly enhances the RAG ability of LLMs, demonstrating remarkable improvements in RAG performance across various tasks.
|
22 |
+
|
23 |
+
| Model | WQA (acc) | PQA (acc) | TQA (acc) | OBQA (EM) | Pub (EM) | ARC (EM) | 2WIKI (acc) | HotP (acc) | MSQ (acc) | CFQA (EM) | PubMed (EM) |
|
24 |
+
|--------------------------------|-----------|-----------|-----------|-----------|----------|----------|-------------|------------|-----------|-----------|-------------|
|
25 |
+
| Llama3.2-3B | 58.7 | 61.8 | 69.7 | 77.0 | 55.0 | 66.8 | 55.6 | 40.2 | 13.2 | 46.8 | 70.3 |
|
26 |
+
| Llama3.1-8B | 59.5 | 60.8 | 73.4 | 82.0 | 56.7 | 77.1 | 65.6 | 45.6 | 18.7 | 56.5 | 73.9 |
|
27 |
+
| Llama3.2-3B + **RAG-Instruct** | 65.3 | 64.0 | 77.0 | 81.2 | 66.4 | 73.0 | 72.9 | 52.7 | 25.0 | 50.3 | 72.6 |
|
28 |
+
| Llama3.1-8B + **RAG-Instruct** | 69.7 | 68.4 | 79.3 | 84.8 | 77.2 | 79.9 | 79.3 | 56.4 | 30.3 | 57.8 | 77.0 |
|
29 |
+
|
30 |
+
|
31 |
+
## 📖 Citation
|
32 |
+
```
|
33 |
+
@misc{liu2024raginstructboostingllmsdiverse,
|
34 |
+
title={RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions},
|
35 |
+
author={Wanlong Liu and Junying Chen and Ke Ji and Li Zhou and Wenyu Chen and Benyou Wang},
|
36 |
+
year={2024},
|
37 |
+
eprint={2501.00353},
|
38 |
+
archivePrefix={arXiv},
|
39 |
+
primaryClass={cs.CL},
|
40 |
+
url={https://arxiv.org/abs/2501.00353},
|
41 |
+
}
|
42 |
+
```
|