Text Generation
Safetensors
English
File size: 3,506 Bytes
dbaf663
 
 
 
 
 
 
 
 
 
 
 
9593998
dbaf663
34e6544
dbaf663
 
 
 
 
76313c9
dbaf663
 
 
 
 
 
 
 
34e6544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9593998
dbaf663
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
datasets:
- FreedomIntelligence/RAG-Instruct
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B
pipeline_tag: text-generation
---
## Introduction

RAG-Instruct is a method for generating diverse and high-quality RAG instruction data. It synthesizes instruction datasets based on any source corpus, leveraging the following approaches:

- **Five RAG paradigms**, which represent diverse query-document relationships to enhance model generalization across tasks.
- **Instruction simulation**, which enriches instruction diversity and quality by utilizing the strengths of existing instruction datasets.

Using this approach, we constructed a 40K instruction dataset from Wikipedia, covering a wide range of RAG scenarios and tasks. 

Our RAG-Instruct significantly enhances the RAG ability of LLMs, demonstrating remarkable improvements in RAG performance across various tasks.

| Model                          | WQA (acc) | PQA (acc) | TQA (acc) | OBQA (EM) | Pub (EM) | ARC (EM) | 2WIKI (acc) | HotP (acc) | MSQ (acc) | CFQA (EM) | PubMed (EM) |
|--------------------------------|-----------|-----------|-----------|-----------|----------|----------|-------------|------------|-----------|-----------|-------------|
| Llama3.1-8B                    | 59.5                      | 60.8                | 73.4               |  82.0                           | 56.7                    | 77.1                    | 65.6                 | 45.6           | 18.7            | 56.5                     | 73.9                    |
| Llama3.1-8B + **RAG-Instruct**     | 69.7                      | 68.4                | 79.3               |  84.8                           | 77.2                    | 79.9                    | 79.3                 | 56.4           | 30.3            | 57.8                     | 77.0                    |


# <span>Usage</span>
RAG-Instruct models can be used just like `Llama-3.1-8B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang),  or perform direct inference:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/RAG-Instruct-Llama3-8B",torch_dtype="auto",device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/RAG-Instruct-Llama3-8B")

# Example input
input_text = """### Paragraph:
[1] structure is at risk from new development...
[2] as Customs and Excise stores...
[3] Powis Street is partly underway...
...

### Instruction:
Which organization is currently using a building in Woolwich that holds historical importance?
"""

# Tokenize and prepare input
messages = [{"role": "user", "content": input_text}]
inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True), return_tensors="pt").to(model.device)

# Generate output
outputs = model.generate(**inputs, max_new_tokens=2048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Citation
```
@misc{liu2024raginstructboostingllmsdiverse,
      title={RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions}, 
      author={Wanlong Liu and Junying Chen and Ke Ji and Li Zhou and Wenyu Chen and Benyou Wang},
      year={2024},
      eprint={2501.00353},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.00353}, 
}
```