---
license: mit
library_name: transformers
pipeline_tag: image-text-to-text
---
![header](./assets/assets_header.png)
📃 Paper • 🌐 Demo • 📃 Github • 🤗 LongLLaVA-53B-A13B
![efficiency](./assets/singleGPU.png)
## 🌈 Update
* **[2024.09.05]** LongLLaVA repo is published!🎉
* **[2024.10.12]** [LongLLaVA-53B-A13B](https://huggingface.co./FreedomIntelligence/LongLLaVA-53B-A13B), [LongLLaVA-9b](https://huggingface.co./FreedomIntelligence/LongLLaVA-9B) and [Jamba-9B-Instruct](https://huggingface.co./FreedomIntelligence/Jamba-9B-Instruct) are repleased!🎉
## Architecture
Click to view the architecture image
![Architecture Image](./assets/arch.png)
## Results
Click to view the Results
- Main Results
![Main Results](./assets/result1.png)
- Diagnostic Results
![Diagnostic Results](./assets/diaresult.png)
- Video-NIAH
![Video-NIAH](./assets/NIAH.png)
## Results reproduction
### Evaluation
- Preparation
Get the model inference code from [Github](https://github.com/FreedomIntelligence/LongLLaVA).
```bash
git clone https://github.com/FreedomIntelligence/LongLLaVA.git
```
- Environment Setup
```bash
pip install -r requirements.txt
```
- Command Line Interface
```bash
python cli.py --model_dir path-to-longllava
```
- Model Inference
```python
query = 'What does the picture show?'
image_paths = ['image_path1'] # image or video path
from cli import Chatbot
bot = Chatbot(path-to-longllava)
output = bot.chat(query, image_paths)
print(output) # Prints the output of the model
```
## Acknowledgement
- [LLaVA](https://github.com/haotian-liu/LLaVA): Visual Instruction Tuning (LLaVA) built towards GPT-4V level capabilities and beyond.
## Citation
```
@misc{wang2024longllavascalingmultimodalllms,
title={LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture},
author={Xidong Wang and Dingjie Song and Shunian Chen and Chen Zhang and Benyou Wang},
year={2024},
eprint={2409.02889},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.02889},
}
```