--- license: mit library_name: transformers pipeline_tag: image-text-to-text --- ![header](./assets/header.png)

📃 Paper • 🌐 Demo • 📃 Github • 🤗 LongLLaVA-9B

![efficiency](./assets/singleGPU.png) ## 🌈 Update * **[2024.09.05]** LongLLaVA repo is published!🎉 * **[2024.10.12]** [LongLLaVA-53B-A13B](https://huggingface.co./FreedomIntelligence/LongLLaVA-53B-A13B), [LongLLaVA-9b](https://huggingface.co./FreedomIntelligence/LongLLaVA-9B) and [Jamba-9B-Instruct](https://huggingface.co./FreedomIntelligence/Jamba-9B-Instruct) are repleased!🎉 ## Architecture
Click to view the architecture image ![Architecture Image](./assets/arch.png)
## Results
Click to view the Results - Main Results ![Main Results](./assets/result1.png) - Diagnostic Results ![Diagnostic Results](./assets/diaresult.png) - Video-NIAH ![Video-NIAH](./assets/NIAH.png)
## Results reproduction ### Evaluation - Preparation Get the model inference code from [Github](https://github.com/FreedomIntelligence/LongLLaVA). ```bash git clone https://github.com/FreedomIntelligence/LongLLaVA.git ``` - Environment Setup ```bash pip install -r requirements.txt ``` - Command Line Interface ```bash python cli.py --model_dir path-to-longllava ``` - Model Inference ```python query = 'What does the picture show?' image_paths = ['image_path1'] # image or video path from cli import Chatbot bot = Chatbot(path-to-longllava) output = bot.chat(query, image_paths) print(output) # Prints the output of the model ``` ## Acknowledgement - [LLaVA](https://github.com/haotian-liu/LLaVA): Visual Instruction Tuning (LLaVA) built towards GPT-4V level capabilities and beyond. ## Citation ``` @misc{wang2024longllavascalingmultimodalllms, title={LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture}, author={Xidong Wang and Dingjie Song and Shunian Chen and Chen Zhang and Benyou Wang}, year={2024}, eprint={2409.02889}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.02889}, } ```