Question Answering
Safetensors
qwen2
biology
medical
File size: 9,424 Bytes
40186cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1417c
40186cc
 
 
 
 
 
 
 
 
 
 
 
9ec7b86
40186cc
 
 
 
 
 
 
 
 
 
 
 
9ec7b86
 
 
 
 
 
 
 
 
 
 
40186cc
 
 
 
 
9ec7b86
40186cc
 
 
 
 
9ec7b86
 
40186cc
9ec7b86
 
40186cc
 
9ec7b86
40186cc
 
 
 
9ec7b86
 
40186cc
9ec7b86
40186cc
 
9ec7b86
40186cc
 
 
 
 
9ec7b86
40186cc
 
9ec7b86
40186cc
 
 
 
9ec7b86
40186cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec7b86
40186cc
 
 
 
9ec7b86
40186cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec7b86
40186cc
 
 
83cde75
 
 
 
 
 
 
 
 
 
2329a8b
83cde75
 
 
 
 
 
 
 
40186cc
2329a8b
83cde75
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec7b86
40186cc
 
 
9ec7b86
 
40186cc
 
 
9ec7b86
40186cc
 
9ec7b86
40186cc
 
9ec7b86
40186cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec7b86
40186cc
 
 
9ec7b86
40186cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
---
license: apache-2.0
datasets:
- FreedomIntelligence/ApolloMoEDataset
language:
- ar
- en
- zh
- ko
- ja
- mn
- th
- vi
- lo
- mg
- de
- pt
- es
- fr
- ru
- it
- hr
- gl
- cs
- co
- la
- uk
- bs
- bg
- eo
- sq
- da
- sa
- gn
- sr
- sk
- gd
- lb
- hi
- ku
- mt
- he
- ln
- bm
- sw
- ig
- rw
- ha
metrics:
- accuracy
base_model:
- Qwen/Qwen2-7B
pipeline_tag: question-answering
tags:
- biology
- medical
---
# Democratizing Medical LLMs For Much More Languages

Covering 12 Major Languages including English, Chinese, French, Hindi, Spanish, Arabic, Russian, Japanese, Korean, German, Italian, Portuguese and 38 Minor Languages So far.



<p align="center">
   ๐Ÿ“ƒ <a href="https://arxiv.org/abs/2410.10626" target="_blank">Paper</a> โ€ข ๐ŸŒ <a href="" target="_blank">Demo</a> โ€ข ๐Ÿค— <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEDataset" target="_blank">ApolloMoEDataset</a> โ€ข ๐Ÿค— <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEBench" target="_blank">ApolloMoEBench</a>  โ€ข ๐Ÿค— <a href="https://huggingface.co./collections/FreedomIntelligence/apollomoe-and-apollo2-670ddebe3bb1ba1aebabbf2c" target="_blank">Models</a>  โ€ข๐ŸŒ <a href="https://github.com/FreedomIntelligence/Apollo" target="_blank">Apollo</a>  โ€ข ๐ŸŒ <a href="https://github.com/FreedomIntelligence/ApolloMoE" target="_blank">ApolloMoE</a>
</p>



![Apollo](assets/apollo_medium_final.png)


## ๐ŸŒˆ Update

* **[2024.10.15]** ApolloMoE repo is published๏ผ๐ŸŽ‰


## Languages Coverage
12 Major Languages and 38 Minor Languages

<details>
  <summary>Click to view the Languages Coverage</summary>
   
   ![ApolloMoE](assets/languages.png)

</details>


## Architecture

<details>
  <summary>Click to view the MoE routing image</summary>

  ![ApolloMoE](assets/hybrid_routing.png)

</details>

## Results

#### Dense
   ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo2-0.5B" target="_blank">Apollo2-0.5B</a>  โ€ข ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo2-1.5B" target="_blank">Apollo2-1.5B</a>  โ€ข ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo2-2B" target="_blank">Apollo2-2B</a>  
   
   ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo2-3.8B" target="_blank">Apollo2-3.8B</a>  โ€ข ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo2-7B" target="_blank">Apollo2-7B</a>  โ€ข ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo2-9B" target="_blank">Apollo2-9B</a>  

<details>
  <summary>Click to view the Dense Models Results</summary>

   ![ApolloMoE](assets/dense_results.png)

</details>


#### Post-MoE
   ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo-MoE-0.5B" target="_blank">Apollo-MoE-0.5B</a>  โ€ข ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo-MoE-1.5B" target="_blank">Apollo-MoE-1.5B</a>  โ€ข ๐Ÿค— <a href="https://huggingface.co./FreedomIntelligence/Apollo-MoE-7B" target="_blank">Apollo-MoE-7B</a>  

<details>
  <summary>Click to view the Post-MoE Models Results</summary>

   ![ApolloMoE](assets/post_moe_results.png)

</details>

   
  

## Usage Format
##### Apollo2
- 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|>
- 2B, 9B: User:{query}\nAssistant:{response}\<eos\>
- 3.8B: <|user|>\n{query}<|end|><|assisitant|>\n{response}<|end|>

##### Apollo-MoE
- 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|>
  
## Dataset & Evaluation

- Dataset
  ๐Ÿค— <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEDataset" target="_blank">ApolloMoEDataset</a>

   <details><summary>Click to expand</summary>

    ![ApolloMoE](assets/Dataset.png)

    - [Data category](https://huggingface.co./datasets/FreedomIntelligence/ApolloCorpus/tree/main/train)


   </details>

- Evaluation
  ๐Ÿค— <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEBench" target="_blank">ApolloMoEBench</a> 

   <details><summary>Click to expand</summary>
  
     - EN:
       - [MedQA-USMLE](https://huggingface.co./datasets/GBaker/MedQA-USMLE-4-options) 
       - [MedMCQA](https://huggingface.co./datasets/medmcqa/viewer/default/test)
       - [PubMedQA](https://huggingface.co./datasets/pubmed_qa): Because the results fluctuated too much, they were not used in the paper.
       - [MMLU-Medical](https://huggingface.co./datasets/cais/mmlu)
         - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
     - ZH:
       - [MedQA-MCMLE](https://huggingface.co./datasets/bigbio/med_qa/viewer/med_qa_zh_4options_bigbio_qa/test)
       - [CMB-single](https://huggingface.co./datasets/FreedomIntelligence/CMB): Not used in the paper
         - Randomly sample 2,000 multiple-choice questions with single answer.
       - [CMMLU-Medical](https://huggingface.co./datasets/haonan-li/cmmlu)
         - Anatomy, Clinical_knowledge, College_medicine, Genetics, Nutrition, Traditional_chinese_medicine, Virology
       - [CExam](https://github.com/williamliujl/CMExam): Not used in the paper
         - Randomly sample 2,000 multiple-choice questions


     - ES: [Head_qa](https://huggingface.co./datasets/head_qa)
     - FR:
       - [Frenchmedmcqa](https://github.com/qanastek/FrenchMedMCQA)
       - [MMLU_FR]
         - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
     - HI: [MMLU_HI](https://huggingface.co./datasets/FreedomIntelligence/MMLU_Hindi)
        - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
     - AR: [MMLU_AR](https://huggingface.co./datasets/FreedomIntelligence/MMLU_Arabic)
        - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
     - JA: [IgakuQA](https://github.com/jungokasai/IgakuQA)
     - KO: [KorMedMCQA](https://huggingface.co./datasets/sean0042/KorMedMCQA)
     - IT:
       - [MedExpQA](https://huggingface.co./datasets/HiTZ/MedExpQA)
       - [MMLU_IT]
         - Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
     - DE: [BioInstructQA](https://huggingface.co./datasets/BioMistral/BioInstructQA): German part
     - PT: [BioInstructQA](https://huggingface.co./datasets/BioMistral/BioInstructQA): Portuguese part
     - RU: [RuMedBench](https://github.com/sb-ai-lab/MedBench)

  


   </details>
## Model Download and Inference
   We take Apollo-MoE-0.5B as an example
   1. Login Huggingface
      
       ```
       huggingface-cli login --token $HUGGINGFACE_TOKEN
       ```
       
   2. Download model to local dir
        
       ```python
       from huggingface_hub import snapshot_download
       import os

       local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B')
       snapshot_download(repo_id="FreedomIntelligence/Apollo-MoE-0.5B", local_dir=local_model_dir)
       ```
       
   3. Inference Example

      ```python
      from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
      import os
      
      local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B')
      
      model=AutoModelForCausalLM.from_pretrained(local_model_dir,trust_remote_code=True)
      tokenizer = AutoTokenizer.from_pretrained(local_model_dir,trust_remote_code=True)
      generation_config = GenerationConfig.from_pretrained(local_model_dir, pad_token_id=tokenizer.pad_token_id, num_return_sequences=1, max_new_tokens=7, min_new_tokens=2, do_sample=False, temperature=1.0, top_k=50, top_p=1.0)
      
      inputs = tokenizer('Answer direclty.\nThe capital of Mongolia is Ulaanbaatar.\nThe capital of Iceland is Reykjavik.\nThe capital of Australia is', return_tensors='pt')
      inputs = inputs.to(model.device)
      pred = model.generate(**inputs,generation_config=generation_config)
      print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
      ```

## Results reproduction
   <details><summary>Click to expand</summary>


   We take Apollo2-7B or Apollo-MoE-0.5B as example
   1. Download Dataset for project:

      ```
      bash 0.download_data.shย  
      ```
    
   2. Prepare test and dev data for specific model:

      
      - Create test data for with special token
        
       ```
       bash 1.data_process_test&dev.sh
       ```
    
   3. Prepare train data for specific model (Create tokenized data in advance):

    
      - You can adjust data Training order and Training Epoch in this step

       ```
       bash 2.data_process_train.sh
       ```
    
   4. Train the model

    
      - If you want to train in Multi Nodes please refer to ./src/sft/training_config/zero_multi.yaml


       ```
       bash 3.single_node_train.sh
       ```


   5. Evaluate your model: Generate score for benchmark
      
         ```
         bash 4.eval.sh
         ```

   </details>



##  Citation
Please use the following citation if you intend to use our dataset for training or evaluation:

```
@misc{zheng2024efficientlydemocratizingmedicalllms,
      title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts}, 
      author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang},
      year={2024},
      eprint={2410.10626},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.10626}, 
}
```