--- language: en tags: - bigbird - question-answering - squad-v2.2 license: apache-2.0 datasets: - squad_v2 metrics: - f1 - exact_match library_name: adapter-transformers pipeline_tag: question-answering --- # FredNajjar/bigbird-QA-squad_v2.2 Fine-tuned [`google/bigbird-roberta-base`](https://huggingface.co./google/bigbird-roberta-base) model on the SQuAD 2.0 dataset for English extractive question answering. ## Model Details - **Language Model**: [google/bigbird-roberta-base](https://huggingface.co./google/bigbird-roberta-base) - **Language**: English - **Task**: Extractive Question Answering - **Data**: [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) - **Infrastructure**: 1x NVIDIA A100-SXM4-40GB ## Training Hyperparameters - Learning Rate: 3e-05 - Train Batch Size: 16 - Eval Batch Size: 8 - Seed: 42 - Gradient Accumulation Steps: 8 - Total Train Batch Size: 128 - Optimizer: Adam (betas=(0.9,0.999), epsilon=1e-08) - LR Scheduler: Linear with 121 warmup steps - Number of Epochs: 3 ## Results on SQuAD 2.0 - **F1 Score**: 81.39% - **Exact Match**: 77.82% ## Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "FredNajjar/bigbird-QA-squad_v2.2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Your question here', 'context': 'Your context here' } res = nlp(QA_input) ``` - **Framework Versions**: - Transformers: 4.34.0 - Pytorch: 2.0.1+cu118 - Datasets: 2.14.5 - Tokenizers: 0.14.1 ## Limitations and Bias This model inherits limitations and potential biases from the base BigBird model and the SQuAD 2.0 training data. ## Contact For inquiries, please reach out via [LinkedIn](https://www.linkedin.com/in/frednajjar/). ---