FredNajjar
commited on
Commit
•
7f7b012
1
Parent(s):
6a1d245
Update README.md
Browse files
README.md
CHANGED
@@ -1,64 +1,65 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
base_model: google/bigbird-roberta-base
|
4 |
tags:
|
5 |
-
-
|
|
|
|
|
|
|
6 |
datasets:
|
7 |
- squad_v2
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
---
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
## Training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
## Training procedure
|
35 |
-
|
36 |
-
### Training hyperparameters
|
37 |
-
|
38 |
-
The following hyperparameters were used during training:
|
39 |
-
- learning_rate: 3e-05
|
40 |
-
- train_batch_size: 16
|
41 |
-
- eval_batch_size: 8
|
42 |
-
- seed: 42
|
43 |
-
- gradient_accumulation_steps: 8
|
44 |
-
- total_train_batch_size: 128
|
45 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
-
- lr_scheduler_type: linear
|
47 |
-
- lr_scheduler_warmup_steps: 121
|
48 |
-
- num_epochs: 3
|
49 |
-
|
50 |
-
### Training results
|
51 |
-
|
52 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
-
|:-------------:|:-----:|:----:|:---------------:|
|
54 |
-
| 1.0955 | 1.0 | 814 | 0.9719 |
|
55 |
-
| 0.8505 | 2.0 | 1629 | 0.8657 |
|
56 |
-
| 0.6993 | 3.0 | 2442 | 0.8585 |
|
57 |
-
|
58 |
-
|
59 |
-
### Framework versions
|
60 |
-
|
61 |
-
- Transformers 4.34.0
|
62 |
-
- Pytorch 2.0.1+cu118
|
63 |
-
- Datasets 2.14.5
|
64 |
-
- Tokenizers 0.14.1
|
|
|
1 |
+
$---
|
2 |
+
language: english
|
|
|
3 |
tags:
|
4 |
+
- bigbird
|
5 |
+
- question-answering
|
6 |
+
- squad-v2.2
|
7 |
+
license: apache-2.0
|
8 |
datasets:
|
9 |
- squad_v2
|
10 |
+
metrics:
|
11 |
+
- f1
|
12 |
+
- exact_match
|
13 |
---
|
14 |
|
15 |
+
# FredNajjar/bigbird-QA-squad_v2.2
|
16 |
+
|
17 |
+
Fine-tuned [`google/bigbird-roberta-base`](https://huggingface.co/google/bigbird-roberta-base) model on the SQuAD 2.0 dataset for English extractive question answering.
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
- **Language Model**: [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base)
|
21 |
+
- **Language**: English
|
22 |
+
- **Task**: Extractive QA
|
23 |
+
- **Training Data**: [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/)
|
24 |
+
- **Eval Data**: [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/)
|
25 |
+
- **Framework Versions**:
|
26 |
+
- Transformers: 4.34.0
|
27 |
+
- Pytorch: 2.0.1+cu118
|
28 |
+
- Datasets: 2.14.5
|
29 |
+
- Tokenizers: 0.14.1
|
30 |
+
- **Infrastructure**: 1x Tesla A100
|
31 |
+
|
32 |
+
## Training Hyperparameters
|
33 |
+
- Learning Rate: 3e-05
|
34 |
+
- Train Batch Size: 16
|
35 |
+
- Eval Batch Size: 8
|
36 |
+
- Seed: 42
|
37 |
+
- Gradient Accumulation Steps: 8
|
38 |
+
- Total Train Batch Size: 128
|
39 |
+
- Optimizer: Adam (betas=(0.9,0.999), epsilon=1e-08)
|
40 |
+
- LR Scheduler: Linear with 121 warmup steps
|
41 |
+
- Number of Epochs: 3
|
42 |
+
|
43 |
+
## Results on SQuAD 2.0
|
44 |
+
- **F1 Score**: 81.39%
|
45 |
+
- **Exact Match**: 77.82%
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
```python
|
49 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
50 |
+
model_name = "FredNajjar/bigbird-QA-squad_v2.2"
|
51 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
52 |
+
QA_input = {
|
53 |
+
'question': 'Your question here',
|
54 |
+
'context': 'Your context here'
|
55 |
+
}
|
56 |
+
res = nlp(QA_input)
|
57 |
+
```
|
58 |
+
|
59 |
+
## Limitations and Bias
|
60 |
+
This model inherits limitations and potential biases from the base BigBird model and the SQuAD 2.0 training data.
|
61 |
+
|
62 |
+
## Contact
|
63 |
+
For inquiries, please reach out via [LinkedIn](https://www.linkedin.com/in/frednajjar/).
|
64 |
|
65 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|