Update README.md
Browse files
README.md
CHANGED
@@ -1,54 +1,54 @@
|
|
1 |
---
|
2 |
license: bigscience-bloom-rail-1.0
|
3 |
language:
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
tags:
|
53 |
- mteb
|
54 |
model-index:
|
@@ -2342,7 +2342,7 @@ model-index:
|
|
2342 |
- type: recall_at_1000
|
2343 |
value: 84.3
|
2344 |
- type: recall_at_3
|
2345 |
-
value: 49
|
2346 |
- type: recall_at_5
|
2347 |
value: 50.4
|
2348 |
- task:
|
@@ -2690,7 +2690,7 @@ model-index:
|
|
2690 |
- type: mrr_at_5
|
2691 |
value: 86.914
|
2692 |
- type: ndcg_at_1
|
2693 |
-
value: 81
|
2694 |
- type: ndcg_at_10
|
2695 |
value: 88.009
|
2696 |
- type: ndcg_at_100
|
@@ -2702,7 +2702,7 @@ model-index:
|
|
2702 |
- type: ndcg_at_5
|
2703 |
value: 86.75399999999999
|
2704 |
- type: precision_at_1
|
2705 |
-
value: 81
|
2706 |
- type: precision_at_10
|
2707 |
value: 13.343
|
2708 |
- type: precision_at_100
|
@@ -3332,19 +3332,19 @@ model-index:
|
|
3332 |
- type: map_at_5
|
3333 |
value: 1.169
|
3334 |
- type: mrr_at_1
|
3335 |
-
value: 94
|
3336 |
- type: mrr_at_10
|
3337 |
-
value: 97
|
3338 |
- type: mrr_at_100
|
3339 |
-
value: 97
|
3340 |
- type: mrr_at_1000
|
3341 |
-
value: 97
|
3342 |
- type: mrr_at_3
|
3343 |
-
value: 97
|
3344 |
- type: mrr_at_5
|
3345 |
-
value: 97
|
3346 |
- type: ndcg_at_1
|
3347 |
-
value: 88
|
3348 |
- type: ndcg_at_10
|
3349 |
value: 83.21
|
3350 |
- type: ndcg_at_100
|
@@ -3356,7 +3356,7 @@ model-index:
|
|
3356 |
- type: ndcg_at_5
|
3357 |
value: 86.20100000000001
|
3358 |
- type: precision_at_1
|
3359 |
-
value: 94
|
3360 |
- type: precision_at_10
|
3361 |
value: 88.2
|
3362 |
- type: precision_at_100
|
@@ -3474,13 +3474,13 @@ model-index:
|
|
3474 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3475 |
metrics:
|
3476 |
- type: accuracy
|
3477 |
-
value: 42
|
3478 |
- type: f1
|
3479 |
value: 36.81003102453103
|
3480 |
- type: precision
|
3481 |
value: 35.19870269535562
|
3482 |
- type: recall
|
3483 |
-
value: 42
|
3484 |
- task:
|
3485 |
type: BitextMining
|
3486 |
dataset:
|
@@ -3559,13 +3559,13 @@ model-index:
|
|
3559 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3560 |
metrics:
|
3561 |
- type: accuracy
|
3562 |
-
value: 9
|
3563 |
- type: f1
|
3564 |
value: 6.926590762281661
|
3565 |
- type: precision
|
3566 |
value: 6.507185696775364
|
3567 |
- type: recall
|
3568 |
-
value: 9
|
3569 |
- task:
|
3570 |
type: BitextMining
|
3571 |
dataset:
|
@@ -3712,13 +3712,13 @@ model-index:
|
|
3712 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3713 |
metrics:
|
3714 |
- type: accuracy
|
3715 |
-
value: 16
|
3716 |
- type: f1
|
3717 |
value: 12.172850459161385
|
3718 |
- type: precision
|
3719 |
value: 11.27855570316309
|
3720 |
- type: recall
|
3721 |
-
value: 16
|
3722 |
- task:
|
3723 |
type: BitextMining
|
3724 |
dataset:
|
@@ -3763,13 +3763,13 @@ model-index:
|
|
3763 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3764 |
metrics:
|
3765 |
- type: accuracy
|
3766 |
-
value: 21
|
3767 |
- type: f1
|
3768 |
value: 17.006564035803166
|
3769 |
- type: precision
|
3770 |
value: 15.844832112332114
|
3771 |
- type: recall
|
3772 |
-
value: 21
|
3773 |
- task:
|
3774 |
type: BitextMining
|
3775 |
dataset:
|
@@ -3814,13 +3814,13 @@ model-index:
|
|
3814 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3815 |
metrics:
|
3816 |
- type: accuracy
|
3817 |
-
value: 69
|
3818 |
- type: f1
|
3819 |
value: 63.68992285492286
|
3820 |
- type: precision
|
3821 |
value: 61.72837301587302
|
3822 |
- type: recall
|
3823 |
-
value: 69
|
3824 |
- task:
|
3825 |
type: BitextMining
|
3826 |
dataset:
|
@@ -3865,13 +3865,13 @@ model-index:
|
|
3865 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3866 |
metrics:
|
3867 |
- type: accuracy
|
3868 |
-
value: 69
|
3869 |
- type: f1
|
3870 |
value: 62.61056277056276
|
3871 |
- type: precision
|
3872 |
value: 59.96357142857143
|
3873 |
- type: recall
|
3874 |
-
value: 69
|
3875 |
- task:
|
3876 |
type: BitextMining
|
3877 |
dataset:
|
@@ -4188,13 +4188,13 @@ model-index:
|
|
4188 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4189 |
metrics:
|
4190 |
- type: accuracy
|
4191 |
-
value: 9
|
4192 |
- type: f1
|
4193 |
value: 6.952605595133894
|
4194 |
- type: precision
|
4195 |
value: 6.457724621713984
|
4196 |
- type: recall
|
4197 |
-
value: 9
|
4198 |
- task:
|
4199 |
type: BitextMining
|
4200 |
dataset:
|
@@ -4341,13 +4341,13 @@ model-index:
|
|
4341 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4342 |
metrics:
|
4343 |
- type: accuracy
|
4344 |
-
value: 95
|
4345 |
- type: f1
|
4346 |
value: 93.61666666666666
|
4347 |
- type: precision
|
4348 |
value: 92.93333333333332
|
4349 |
- type: recall
|
4350 |
-
value: 95
|
4351 |
- task:
|
4352 |
type: BitextMining
|
4353 |
dataset:
|
@@ -4443,13 +4443,13 @@ model-index:
|
|
4443 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4444 |
metrics:
|
4445 |
- type: accuracy
|
4446 |
-
value: 97
|
4447 |
- type: f1
|
4448 |
value: 96.05
|
4449 |
- type: precision
|
4450 |
value: 95.58333333333334
|
4451 |
- type: recall
|
4452 |
-
value: 97
|
4453 |
- task:
|
4454 |
type: BitextMining
|
4455 |
dataset:
|
@@ -4851,13 +4851,13 @@ model-index:
|
|
4851 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4852 |
metrics:
|
4853 |
- type: accuracy
|
4854 |
-
value: 78
|
4855 |
- type: f1
|
4856 |
value: 73.95134920634919
|
4857 |
- type: precision
|
4858 |
value: 72.3770634920635
|
4859 |
- type: recall
|
4860 |
-
value: 78
|
4861 |
- task:
|
4862 |
type: BitextMining
|
4863 |
dataset:
|
@@ -5607,6 +5607,7 @@ model-index:
|
|
5607 |
value: 65.23766736490957
|
5608 |
- type: f1
|
5609 |
value: 82.17794239849368
|
|
|
5610 |
---
|
5611 |
|
5612 |
# Model Card for udever-bloom
|
@@ -5800,4 +5801,4 @@ Negatives for SNLI and MultiNLI are randomly sampled.
|
|
5800 |
journal={arXiv preprint arXiv:2310.08232},
|
5801 |
year={2023}
|
5802 |
}
|
5803 |
-
```
|
|
|
1 |
---
|
2 |
license: bigscience-bloom-rail-1.0
|
3 |
language:
|
4 |
+
- ak
|
5 |
+
- ar
|
6 |
+
- as
|
7 |
+
- bm
|
8 |
+
- bn
|
9 |
+
- ca
|
10 |
+
- code
|
11 |
+
- en
|
12 |
+
- es
|
13 |
+
- eu
|
14 |
+
- fon
|
15 |
+
- fr
|
16 |
+
- gu
|
17 |
+
- hi
|
18 |
+
- id
|
19 |
+
- ig
|
20 |
+
- ki
|
21 |
+
- kn
|
22 |
+
- lg
|
23 |
+
- ln
|
24 |
+
- ml
|
25 |
+
- mr
|
26 |
+
- ne
|
27 |
+
- nso
|
28 |
+
- ny
|
29 |
+
- or
|
30 |
+
- pa
|
31 |
+
- pt
|
32 |
+
- rn
|
33 |
+
- rw
|
34 |
+
- sn
|
35 |
+
- st
|
36 |
+
- sw
|
37 |
+
- ta
|
38 |
+
- te
|
39 |
+
- tn
|
40 |
+
- ts
|
41 |
+
- tum
|
42 |
+
- tw
|
43 |
+
- ur
|
44 |
+
- vi
|
45 |
+
- wo
|
46 |
+
- xh
|
47 |
+
- yo
|
48 |
+
- zh
|
49 |
+
- zhs
|
50 |
+
- zht
|
51 |
+
- zu
|
52 |
tags:
|
53 |
- mteb
|
54 |
model-index:
|
|
|
2342 |
- type: recall_at_1000
|
2343 |
value: 84.3
|
2344 |
- type: recall_at_3
|
2345 |
+
value: 49
|
2346 |
- type: recall_at_5
|
2347 |
value: 50.4
|
2348 |
- task:
|
|
|
2690 |
- type: mrr_at_5
|
2691 |
value: 86.914
|
2692 |
- type: ndcg_at_1
|
2693 |
+
value: 81
|
2694 |
- type: ndcg_at_10
|
2695 |
value: 88.009
|
2696 |
- type: ndcg_at_100
|
|
|
2702 |
- type: ndcg_at_5
|
2703 |
value: 86.75399999999999
|
2704 |
- type: precision_at_1
|
2705 |
+
value: 81
|
2706 |
- type: precision_at_10
|
2707 |
value: 13.343
|
2708 |
- type: precision_at_100
|
|
|
3332 |
- type: map_at_5
|
3333 |
value: 1.169
|
3334 |
- type: mrr_at_1
|
3335 |
+
value: 94
|
3336 |
- type: mrr_at_10
|
3337 |
+
value: 97
|
3338 |
- type: mrr_at_100
|
3339 |
+
value: 97
|
3340 |
- type: mrr_at_1000
|
3341 |
+
value: 97
|
3342 |
- type: mrr_at_3
|
3343 |
+
value: 97
|
3344 |
- type: mrr_at_5
|
3345 |
+
value: 97
|
3346 |
- type: ndcg_at_1
|
3347 |
+
value: 88
|
3348 |
- type: ndcg_at_10
|
3349 |
value: 83.21
|
3350 |
- type: ndcg_at_100
|
|
|
3356 |
- type: ndcg_at_5
|
3357 |
value: 86.20100000000001
|
3358 |
- type: precision_at_1
|
3359 |
+
value: 94
|
3360 |
- type: precision_at_10
|
3361 |
value: 88.2
|
3362 |
- type: precision_at_100
|
|
|
3474 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3475 |
metrics:
|
3476 |
- type: accuracy
|
3477 |
+
value: 42
|
3478 |
- type: f1
|
3479 |
value: 36.81003102453103
|
3480 |
- type: precision
|
3481 |
value: 35.19870269535562
|
3482 |
- type: recall
|
3483 |
+
value: 42
|
3484 |
- task:
|
3485 |
type: BitextMining
|
3486 |
dataset:
|
|
|
3559 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3560 |
metrics:
|
3561 |
- type: accuracy
|
3562 |
+
value: 9
|
3563 |
- type: f1
|
3564 |
value: 6.926590762281661
|
3565 |
- type: precision
|
3566 |
value: 6.507185696775364
|
3567 |
- type: recall
|
3568 |
+
value: 9
|
3569 |
- task:
|
3570 |
type: BitextMining
|
3571 |
dataset:
|
|
|
3712 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3713 |
metrics:
|
3714 |
- type: accuracy
|
3715 |
+
value: 16
|
3716 |
- type: f1
|
3717 |
value: 12.172850459161385
|
3718 |
- type: precision
|
3719 |
value: 11.27855570316309
|
3720 |
- type: recall
|
3721 |
+
value: 16
|
3722 |
- task:
|
3723 |
type: BitextMining
|
3724 |
dataset:
|
|
|
3763 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3764 |
metrics:
|
3765 |
- type: accuracy
|
3766 |
+
value: 21
|
3767 |
- type: f1
|
3768 |
value: 17.006564035803166
|
3769 |
- type: precision
|
3770 |
value: 15.844832112332114
|
3771 |
- type: recall
|
3772 |
+
value: 21
|
3773 |
- task:
|
3774 |
type: BitextMining
|
3775 |
dataset:
|
|
|
3814 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3815 |
metrics:
|
3816 |
- type: accuracy
|
3817 |
+
value: 69
|
3818 |
- type: f1
|
3819 |
value: 63.68992285492286
|
3820 |
- type: precision
|
3821 |
value: 61.72837301587302
|
3822 |
- type: recall
|
3823 |
+
value: 69
|
3824 |
- task:
|
3825 |
type: BitextMining
|
3826 |
dataset:
|
|
|
3865 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3866 |
metrics:
|
3867 |
- type: accuracy
|
3868 |
+
value: 69
|
3869 |
- type: f1
|
3870 |
value: 62.61056277056276
|
3871 |
- type: precision
|
3872 |
value: 59.96357142857143
|
3873 |
- type: recall
|
3874 |
+
value: 69
|
3875 |
- task:
|
3876 |
type: BitextMining
|
3877 |
dataset:
|
|
|
4188 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4189 |
metrics:
|
4190 |
- type: accuracy
|
4191 |
+
value: 9
|
4192 |
- type: f1
|
4193 |
value: 6.952605595133894
|
4194 |
- type: precision
|
4195 |
value: 6.457724621713984
|
4196 |
- type: recall
|
4197 |
+
value: 9
|
4198 |
- task:
|
4199 |
type: BitextMining
|
4200 |
dataset:
|
|
|
4341 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4342 |
metrics:
|
4343 |
- type: accuracy
|
4344 |
+
value: 95
|
4345 |
- type: f1
|
4346 |
value: 93.61666666666666
|
4347 |
- type: precision
|
4348 |
value: 92.93333333333332
|
4349 |
- type: recall
|
4350 |
+
value: 95
|
4351 |
- task:
|
4352 |
type: BitextMining
|
4353 |
dataset:
|
|
|
4443 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4444 |
metrics:
|
4445 |
- type: accuracy
|
4446 |
+
value: 97
|
4447 |
- type: f1
|
4448 |
value: 96.05
|
4449 |
- type: precision
|
4450 |
value: 95.58333333333334
|
4451 |
- type: recall
|
4452 |
+
value: 97
|
4453 |
- task:
|
4454 |
type: BitextMining
|
4455 |
dataset:
|
|
|
4851 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4852 |
metrics:
|
4853 |
- type: accuracy
|
4854 |
+
value: 78
|
4855 |
- type: f1
|
4856 |
value: 73.95134920634919
|
4857 |
- type: precision
|
4858 |
value: 72.3770634920635
|
4859 |
- type: recall
|
4860 |
+
value: 78
|
4861 |
- task:
|
4862 |
type: BitextMining
|
4863 |
dataset:
|
|
|
5607 |
value: 65.23766736490957
|
5608 |
- type: f1
|
5609 |
value: 82.17794239849368
|
5610 |
+
library_name: sentence-transformers
|
5611 |
---
|
5612 |
|
5613 |
# Model Card for udever-bloom
|
|
|
5801 |
journal={arXiv preprint arXiv:2310.08232},
|
5802 |
year={2023}
|
5803 |
}
|
5804 |
+
```
|