--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-small-finetuned-gtzan results: [] --- # whisper-small-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4130 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 10 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3174 | 1.0 | 45 | 1.1768 | 0.61 | | 0.687 | 2.0 | 90 | 0.7042 | 0.8 | | 0.4524 | 3.0 | 135 | 0.4748 | 0.85 | | 0.197 | 4.0 | 180 | 0.4230 | 0.89 | | 0.2199 | 5.0 | 225 | 0.4980 | 0.88 | | 0.113 | 6.0 | 270 | 0.3381 | 0.91 | | 0.0054 | 7.0 | 315 | 0.3697 | 0.92 | | 0.004 | 8.0 | 360 | 0.2930 | 0.94 | | 0.0632 | 9.0 | 405 | 0.4574 | 0.92 | | 0.0029 | 10.0 | 450 | 0.4130 | 0.92 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3