--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - generated_from_trainer model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-7B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small type: sharegpt conversation: chatml - path: NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered type: sharegpt conversation: chatml - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: NewEden/Gryphe-Sonnet-3.5-35k-Subset type: sharegpt conversation: chatml - path: Nitral-AI/Reasoning-1shot_ShareGPT type: sharegpt conversation: chatml - path: Nitral-AI/GU_Instruct-ShareGPT type: sharegpt conversation: chatml - path: Nitral-AI/Medical_Instruct-ShareGPT type: sharegpt conversation: chatml - path: AquaV/Resistance-Sharegpt type: sharegpt conversation: chatml - path: AquaV/US-Army-Survival-Sharegpt type: sharegpt conversation: chatml - path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned type: sharegpt conversation: chatml chat_template: chatml val_set_size: 0.002 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: qwen7B wandb_entity: wandb_watch: wandb_name: qwen7B wandb_log_model: gradient_accumulation_steps: 32 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 2 debug: deepspeed: fsdp: fsdp_config: special_tokens: pad_token: ```

# outputs/out This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co./Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 46 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0297 | 0.0043 | 1 | 1.1468 | | 0.8512 | 0.2515 | 58 | 0.8729 | | 0.8496 | 0.5030 | 116 | 0.8193 | | 0.8175 | 0.7546 | 174 | 0.8033 | | 0.7868 | 1.0041 | 232 | 0.7961 | | 0.8119 | 1.2555 | 290 | 0.7934 | | 0.799 | 1.5069 | 348 | 0.7926 | | 0.7891 | 1.7583 | 406 | 0.7923 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1