Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- imagenet-1k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
---
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# Model Card for VAR (Visual AutoRegressive) Transformers 🔥
|
14 |
+
|
15 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
16 |
+
|
17 |
+
[![arXiv](https://img.shields.io/badge/arXiv%20papr-2404.02905-b31b1b.svg)](https://arxiv.org/abs/2404.02905)[![arXiv](https://img.shields.io/badge/demo%20website-VAR%20demo-lightblue)](https://var.vision)
|
18 |
+
|
19 |
+
|
20 |
+
VAR is a new visual generation framework that makes GPT-style models surpass diffusion models **for the first time**🚀, and exhibits clear power-law Scaling Laws📈 like large language models (LLMs).
|
21 |
+
|
22 |
+
<p align="center">
|
23 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/60e73ffd06ad9ae5bbcfc52c/FusWBHW8uJgYWO02HFNGz.png" width=93%>
|
24 |
+
<p>
|
25 |
+
|
26 |
+
VAR redefines the autoregressive learning on images as coarse-to-fine "next-scale prediction" or "next-resolution prediction", diverging from the standard raster-scan "next-token prediction".
|
27 |
+
|
28 |
+
<p align="center">
|
29 |
+
<img src="https://github.com/FoundationVision/VAR/assets/39692511/3e12655c-37dc-4528-b923-ec6c4cfef178" width=93%>
|
30 |
+
<p>
|
31 |
+
|
32 |
+
|
33 |
+
This repo is used for hosting VAR's checkpoints.
|
34 |
+
|
35 |
+
For more details or tutorials see https://github.com/FoundationVision/VAR.
|
36 |
+
|
37 |
+
|