Delete predict_artist.ipynb
Browse files- predict_artist.ipynb +0 -314
predict_artist.ipynb
DELETED
@@ -1,314 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 2,
|
6 |
-
"id": "55c95870",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"from e621_utilities import construct_text_description_from_json_entry\n",
|
11 |
-
"import json\n",
|
12 |
-
"from math import log\n",
|
13 |
-
"import random\n",
|
14 |
-
"import numpy as np\n",
|
15 |
-
"from collections import Counter\n",
|
16 |
-
"\n",
|
17 |
-
"\n",
|
18 |
-
"IMAGE_COUNT=None\n",
|
19 |
-
"INPUT_JSONS=['D:/PythonExperiments/e621_high_score.json','D:/PythonExperiments/e621_low_score.json']\n",
|
20 |
-
"\n",
|
21 |
-
"\n",
|
22 |
-
"def score_post_log_favs(post):\n",
|
23 |
-
" return min(1.0, (log(int(post['fav_count'])+1) / 10))\n",
|
24 |
-
"\n",
|
25 |
-
"def load_tag_sets(data_list):\n",
|
26 |
-
" scores = []\n",
|
27 |
-
" text_descriptions = []\n",
|
28 |
-
" artists = []\n",
|
29 |
-
" for data in data_list:\n",
|
30 |
-
" text_description = construct_text_description_from_json_entry(data)\n",
|
31 |
-
" artist, text_description = extract_artist(text_description)\n",
|
32 |
-
" \n",
|
33 |
-
" score =score_post_log_favs(data)\n",
|
34 |
-
" score_int = round(score * 10)\n",
|
35 |
-
" text_description.append(f\"score:{score_int}\")\n",
|
36 |
-
" \n",
|
37 |
-
" text_descriptions.append(text_description)\n",
|
38 |
-
" artists.append(artist)\n",
|
39 |
-
" return text_descriptions, artists\n",
|
40 |
-
"\n",
|
41 |
-
"def load_data(input_json):\n",
|
42 |
-
" with open(input_json) as f:\n",
|
43 |
-
" data_list = json.load(f)[:IMAGE_COUNT] \n",
|
44 |
-
" # Load scores and tag sets from regular Python variables\n",
|
45 |
-
" return load_tag_sets(data_list)\n",
|
46 |
-
"\n",
|
47 |
-
"def extract_artist(tags):\n",
|
48 |
-
" for tag in tags:\n",
|
49 |
-
" if tag.startswith('by '):\n",
|
50 |
-
" tags.remove(tag)\n",
|
51 |
-
" return tag, tags\n",
|
52 |
-
" return None, tags\n",
|
53 |
-
"\n",
|
54 |
-
"#each of these variables is a list. Each element of the list represents one instance\n",
|
55 |
-
"#in text_descriptions, a single element is a list of strings, where each string is a tag associated with the instance.\n",
|
56 |
-
"#in scores, a single element is the score associated with an instance\n",
|
57 |
-
"text_descriptions = []\n",
|
58 |
-
"artists = []\n",
|
59 |
-
"for input_json in INPUT_JSONS:\n",
|
60 |
-
" sub_text_descriptions, sub_artists = load_data(input_json)\n",
|
61 |
-
" text_descriptions.extend(sub_text_descriptions)\n",
|
62 |
-
" artists.extend(sub_artists)\n"
|
63 |
-
]
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"cell_type": "code",
|
67 |
-
"execution_count": 3,
|
68 |
-
"id": "91c66b57",
|
69 |
-
"metadata": {},
|
70 |
-
"outputs": [
|
71 |
-
{
|
72 |
-
"name": "stdout",
|
73 |
-
"output_type": "stream",
|
74 |
-
"text": [
|
75 |
-
"Artist Count Before Filtering: 57134\n",
|
76 |
-
"Artist Count After Filtering: 698\n"
|
77 |
-
]
|
78 |
-
}
|
79 |
-
],
|
80 |
-
"source": [
|
81 |
-
"# Count the occurrences of each artist\n",
|
82 |
-
"artist_count = Counter(artists)\n",
|
83 |
-
"\n",
|
84 |
-
"# Filter the data to keep only artists with 100 or more occurrences\n",
|
85 |
-
"min_occurrences = 100\n",
|
86 |
-
"filtered_text_descriptions = []\n",
|
87 |
-
"filtered_artists = []\n",
|
88 |
-
"\n",
|
89 |
-
"for tags, artist in zip(text_descriptions, artists):\n",
|
90 |
-
" if artist_count[artist] >= min_occurrences:\n",
|
91 |
-
" filtered_text_descriptions.append(tags)\n",
|
92 |
-
" filtered_artists.append(artist)\n",
|
93 |
-
"\n",
|
94 |
-
"# Print the result\n",
|
95 |
-
"print(f\"Artist Count Before Filtering: {len(set(artists))}\")\n",
|
96 |
-
"print(f\"Artist Count After Filtering: {len(set(filtered_artists))}\")"
|
97 |
-
]
|
98 |
-
},
|
99 |
-
{
|
100 |
-
"cell_type": "code",
|
101 |
-
"execution_count": 4,
|
102 |
-
"id": "acf35591",
|
103 |
-
"metadata": {},
|
104 |
-
"outputs": [],
|
105 |
-
"source": [
|
106 |
-
"from collections import defaultdict\n",
|
107 |
-
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
108 |
-
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
109 |
-
"\n",
|
110 |
-
"\n",
|
111 |
-
"# Combine the tags of all images for each artist\n",
|
112 |
-
"artist_tags = defaultdict(list)\n",
|
113 |
-
"for tags, artist in zip(filtered_text_descriptions, filtered_artists):\n",
|
114 |
-
" artist_tags[artist].extend(tags)\n",
|
115 |
-
"\n",
|
116 |
-
"# Compute the TF-IDF representation for each artist\n",
|
117 |
-
"vectorizer = TfidfVectorizer(token_pattern=r'[^,]+')\n",
|
118 |
-
"X_artist = vectorizer.fit_transform([','.join(tags) for tags in artist_tags.values()])\n",
|
119 |
-
"artist_names = list(artist_tags.keys())"
|
120 |
-
]
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"cell_type": "code",
|
124 |
-
"execution_count": null,
|
125 |
-
"id": "a232e088",
|
126 |
-
"metadata": {},
|
127 |
-
"outputs": [],
|
128 |
-
"source": [
|
129 |
-
"# Given a new image with a tag list (excluding the artist name)\n",
|
130 |
-
"new_image_tags = []\n",
|
131 |
-
"new_tags_string = \"airplane\"\n",
|
132 |
-
"new_image_tags.extend(tag.strip() for tag in new_tags_string.split(\",\"))\n",
|
133 |
-
"\n",
|
134 |
-
"unseen_tags = set(new_image_tags) - set(vectorizer.vocabulary_.keys())\n",
|
135 |
-
"print(f'Unseen Tags:{unseen_tags}')\n",
|
136 |
-
"\n",
|
137 |
-
"# Compute the TF-IDF representation for the new image\n",
|
138 |
-
"X_new_image = vectorizer.transform([','.join(new_image_tags)])\n",
|
139 |
-
"\n",
|
140 |
-
"# Compute the cosine similarity between the new image and each artist\n",
|
141 |
-
"similarities = cosine_similarity(X_new_image, X_artist)[0]\n",
|
142 |
-
"\n",
|
143 |
-
"# Rank the artists by their similarity scores and select the top 10\n",
|
144 |
-
"top_n = 20\n",
|
145 |
-
"\n",
|
146 |
-
"# Top artists\n",
|
147 |
-
"top_artist_indices = np.argsort(similarities)[-top_n:][::-1]\n",
|
148 |
-
"top_artists = [(artist_names[i], similarities[i]) for i in top_artist_indices]\n",
|
149 |
-
"\n",
|
150 |
-
"# Bottom artists\n",
|
151 |
-
"bottom_artist_indices = np.argsort(similarities)[:top_n]\n",
|
152 |
-
"bottom_artists = [(artist_names[i], similarities[i]) for i in bottom_artist_indices]\n",
|
153 |
-
"\n",
|
154 |
-
"# Get the artist names from the top_artists and bottom_artists lists\n",
|
155 |
-
"top_artist_names = [artist for artist, _ in top_artists]\n",
|
156 |
-
"bottom_artist_names = [artist for artist, _ in bottom_artists]\n",
|
157 |
-
"\n",
|
158 |
-
"# Print the top 10 artists with rank numbers and similarity scores\n",
|
159 |
-
"print(\"Top 10 artists:\")\n",
|
160 |
-
"for rank, (artist, score) in enumerate(top_artists, start=1):\n",
|
161 |
-
" print(f\"{rank}. {artist} - similarity score: {score:.4f}\")\n",
|
162 |
-
"\n",
|
163 |
-
"# Print the top 10 artists as a comma-separated list\n",
|
164 |
-
"print(\"\\nTop 10 artists:\", \", \".join(str(artist) for artist in top_artist_names))\n",
|
165 |
-
"\n",
|
166 |
-
"# Print the bottom 10 artists with rank numbers and similarity scores\n",
|
167 |
-
"print(\"\\nBottom 10 artists:\")\n",
|
168 |
-
"for rank, (artist, score) in enumerate(bottom_artists, start=1):\n",
|
169 |
-
" print(f\"{rank}. {artist} - similarity score: {score:.4f}\")\n",
|
170 |
-
"\n",
|
171 |
-
"# Print the bottom 10 artists as a comma-separated list\n",
|
172 |
-
"print(\"\\nBottom 10 artists:\", \", \".join(str(artist) for artist in bottom_artist_names))\n",
|
173 |
-
"\n"
|
174 |
-
]
|
175 |
-
},
|
176 |
-
{
|
177 |
-
"cell_type": "code",
|
178 |
-
"execution_count": null,
|
179 |
-
"id": "8dbb05e8",
|
180 |
-
"metadata": {},
|
181 |
-
"outputs": [],
|
182 |
-
"source": [
|
183 |
-
"\n"
|
184 |
-
]
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"cell_type": "code",
|
188 |
-
"execution_count": 6,
|
189 |
-
"id": "9730cb16",
|
190 |
-
"metadata": {},
|
191 |
-
"outputs": [],
|
192 |
-
"source": [
|
193 |
-
"import pandas as pd\n",
|
194 |
-
"\n",
|
195 |
-
"def calculate_and_save_top_artists(tags, vectorizer, X_artist, artist_names, top_n):\n",
|
196 |
-
" for tag in tags:\n",
|
197 |
-
" new_image_tags = [tag.strip() for tag in tag.split(\",\")]\n",
|
198 |
-
"\n",
|
199 |
-
" # Compute the TF-IDF representation for the new image\n",
|
200 |
-
" X_new_image = vectorizer.transform([','.join(new_image_tags)])\n",
|
201 |
-
"\n",
|
202 |
-
" # Compute the cosine similarity between the new image and each artist\n",
|
203 |
-
" similarities = cosine_similarity(X_new_image, X_artist)[0]\n",
|
204 |
-
"\n",
|
205 |
-
" # Rank the artists by their similarity scores and select the top\n",
|
206 |
-
" top_artist_indices = np.argsort(similarities)[-top_n:][::-1]\n",
|
207 |
-
" top_artists = [(artist_names[i], similarities[i]) for i in top_artist_indices]\n",
|
208 |
-
"\n",
|
209 |
-
" # Create dataframes for artists and similarities\n",
|
210 |
-
" artist_df = pd.DataFrame({tag: [artist for artist, _ in top_artists]}).T\n",
|
211 |
-
" similarity_df = pd.DataFrame({tag: [f\"{artist}({round(similarity, 3)})\" for artist, similarity in top_artists]}).T\n",
|
212 |
-
"\n",
|
213 |
-
" # Append the data to csv files\n",
|
214 |
-
" artist_df.to_csv('top_artists.csv', mode='a', header=False)\n",
|
215 |
-
" similarity_df.to_csv('top_artists_similarity.csv', mode='a', header=False)\n",
|
216 |
-
"\n",
|
217 |
-
" \n",
|
218 |
-
"df = pd.read_csv('all_tags.csv')\n",
|
219 |
-
"unique_sorted_tags = df.iloc[:, 0].tolist()\n",
|
220 |
-
"# Use the function for all keys in the vocabulary\n",
|
221 |
-
"calculate_and_save_top_artists(unique_sorted_tags, vectorizer, X_artist, artist_names, 20)\n"
|
222 |
-
]
|
223 |
-
},
|
224 |
-
{
|
225 |
-
"cell_type": "code",
|
226 |
-
"execution_count": 3,
|
227 |
-
"id": "d38f92b2",
|
228 |
-
"metadata": {},
|
229 |
-
"outputs": [
|
230 |
-
{
|
231 |
-
"name": "stdout",
|
232 |
-
"output_type": "stream",
|
233 |
-
"text": [
|
234 |
-
"Skipping tag ':3' due to invalid characters in the name.\n",
|
235 |
-
"Skipping tag ':<' due to invalid characters in the name.\n",
|
236 |
-
"Skipping tag ':d' due to invalid characters in the name.\n",
|
237 |
-
"Skipping tag ':o' due to invalid characters in the name.\n",
|
238 |
-
"Skipping tag '<3' due to invalid characters in the name.\n",
|
239 |
-
"Skipping tag '<3 censor' due to invalid characters in the name.\n",
|
240 |
-
"Skipping tag '<3 eyes' due to invalid characters in the name.\n",
|
241 |
-
"Skipping tag '<3 pupils' due to invalid characters in the name.\n",
|
242 |
-
"Skipping tag '?!' due to invalid characters in the name.\n",
|
243 |
-
"Skipping tag 'american dragon: jake long' due to invalid characters in the name.\n",
|
244 |
-
"Skipping tag 'dust: an elysian tail' due to invalid characters in the name.\n",
|
245 |
-
"Skipping tag 'five nights at freddy's: security breach' due to invalid characters in the name.\n",
|
246 |
-
"Skipping tag 'mao mao: heroes of pure heart' due to invalid characters in the name.\n",
|
247 |
-
"Skipping tag 'spirit: stallion of the cimarron' due to invalid characters in the name.\n"
|
248 |
-
]
|
249 |
-
}
|
250 |
-
],
|
251 |
-
"source": [
|
252 |
-
"import pandas as pd\n",
|
253 |
-
"import os\n",
|
254 |
-
"\n",
|
255 |
-
"# Load the csv file\n",
|
256 |
-
"df = pd.read_csv('top_artists.csv')\n",
|
257 |
-
"\n",
|
258 |
-
"# Directory to store the txt files\n",
|
259 |
-
"output_dir = 'e6ta'\n",
|
260 |
-
"os.makedirs(output_dir, exist_ok=True) # Make sure the directory exists\n",
|
261 |
-
"\n",
|
262 |
-
"# Characters that are not allowed in filenames\n",
|
263 |
-
"invalid_chars = ['/', '\\\\', ':', '*', '?', '\"', '<', '>', '|']\n",
|
264 |
-
"\n",
|
265 |
-
"# Loop through the DataFrame rows\n",
|
266 |
-
"for index, row in df.iterrows():\n",
|
267 |
-
" # Get the name for the file (replace spaces with '_')\n",
|
268 |
-
" filename = row[0].replace(' ', '_') + '.txt'\n",
|
269 |
-
" \n",
|
270 |
-
" # Check if the filename contains any invalid characters\n",
|
271 |
-
" if any(char in filename for char in invalid_chars):\n",
|
272 |
-
" print(f\"Skipping tag '{row[0]}' due to invalid characters in the name.\")\n",
|
273 |
-
" continue\n",
|
274 |
-
"\n",
|
275 |
-
" # Get the first 10 tags, ignore any that are just whitespace\n",
|
276 |
-
" tags = [str(tag).strip() for tag in row[1:11] if str(tag).strip()]\n",
|
277 |
-
"\n",
|
278 |
-
" # Create the txt file and write the tags\n",
|
279 |
-
" with open(os.path.join(output_dir, filename), 'w') as f:\n",
|
280 |
-
" f.write('\\n'.join(tags))\n",
|
281 |
-
" f.write('\\n') # Add a newline at the end of the file\n"
|
282 |
-
]
|
283 |
-
},
|
284 |
-
{
|
285 |
-
"cell_type": "code",
|
286 |
-
"execution_count": null,
|
287 |
-
"id": "879f5463",
|
288 |
-
"metadata": {},
|
289 |
-
"outputs": [],
|
290 |
-
"source": []
|
291 |
-
}
|
292 |
-
],
|
293 |
-
"metadata": {
|
294 |
-
"kernelspec": {
|
295 |
-
"display_name": "Python 3 (ipykernel)",
|
296 |
-
"language": "python",
|
297 |
-
"name": "python3"
|
298 |
-
},
|
299 |
-
"language_info": {
|
300 |
-
"codemirror_mode": {
|
301 |
-
"name": "ipython",
|
302 |
-
"version": 3
|
303 |
-
},
|
304 |
-
"file_extension": ".py",
|
305 |
-
"mimetype": "text/x-python",
|
306 |
-
"name": "python",
|
307 |
-
"nbconvert_exporter": "python",
|
308 |
-
"pygments_lexer": "ipython3",
|
309 |
-
"version": "3.10.9"
|
310 |
-
}
|
311 |
-
},
|
312 |
-
"nbformat": 4,
|
313 |
-
"nbformat_minor": 5
|
314 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|