--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-800abstracts results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3) [Visualize in Weights & Biases](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3) [Visualize in Weights & Biases](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3) [Visualize in Weights & Biases](https://wandb.ai/nananansnsns/LLLM/runs/oehxz9h3) # bert-800abstracts This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2845 - Precision: 0.6957 - Recall: 0.7694 - F1: 0.7307 - Accuracy: 0.9111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 62 | 0.5356 | 0.4941 | 0.5665 | 0.5279 | 0.8374 | | No log | 2.0 | 124 | 0.3440 | 0.6492 | 0.7011 | 0.6741 | 0.8950 | | No log | 3.0 | 186 | 0.3010 | 0.6713 | 0.7640 | 0.7146 | 0.9064 | | No log | 4.0 | 248 | 0.2845 | 0.6957 | 0.7694 | 0.7307 | 0.9111 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1