FDSRashid commited on
Commit
a649ad3
·
1 Parent(s): a941f8d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -5
README.md CHANGED
@@ -20,7 +20,10 @@ library_name: sentence-transformers
20
 
21
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
22
 
23
- <!--- Describe your model here -->
 
 
 
24
 
25
  ## Usage (Sentence-Transformers)
26
 
@@ -34,7 +37,7 @@ Then you can use the model like this:
34
 
35
  ```python
36
  from sentence_transformers import SentenceTransformer
37
- sentences = ["This is an example sentence", "Each sentence is converted"]
38
 
39
  model = SentenceTransformer('FDSRashid/QulBERT')
40
  embeddings = model.encode(sentences)
@@ -59,7 +62,7 @@ def mean_pooling(model_output, attention_mask):
59
 
60
 
61
  # Sentences we want sentence embeddings for
62
- sentences = ['This is an example sentence', 'Each sentence is converted']
63
 
64
  # Load model from HuggingFace Hub
65
  tokenizer = AutoTokenizer.from_pretrained('FDSRashid/QulBERT')
@@ -83,9 +86,21 @@ print(sentence_embeddings)
83
 
84
  ## Evaluation Results
85
 
86
- <!--- Describe how your model was evaluated -->
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
89
 
90
 
91
  ## Training
 
20
 
21
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
22
 
23
+ This model originates from the [Camel-Bert_Classical Arabic](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca) model. It was then trained on the Jawami' Kalim dataset,
24
+ specifically a dataset of 440,000 matns and their corresponding taraf labels.
25
+ Taraf labels indicate two hadith are about the same report, and as such, are more semantically similar.
26
+
27
 
28
  ## Usage (Sentence-Transformers)
29
 
 
37
 
38
  ```python
39
  from sentence_transformers import SentenceTransformer
40
+ sentences = ["أنا أحب القراءة والكتابة.", "الطيور تحلق في السماء."]
41
 
42
  model = SentenceTransformer('FDSRashid/QulBERT')
43
  embeddings = model.encode(sentences)
 
62
 
63
 
64
  # Sentences we want sentence embeddings for
65
+ sentences = ["أنا أحب القراءة والكتابة.", "الطيور تحلق في السماء."]
66
 
67
  # Load model from HuggingFace Hub
68
  tokenizer = AutoTokenizer.from_pretrained('FDSRashid/QulBERT')
 
86
 
87
  ## Evaluation Results
88
 
89
+ he dataset was split into 75% training, 15% eval, 10% test.
90
+
91
+
92
+
93
+ Validation Results during Training:
94
+
95
+
96
+ Binary Classification Evaluation:
97
+
98
+
99
+
100
+ Triplet Evaluation:
101
+
102
+
103
 
 
104
 
105
 
106
  ## Training