dfucci commited on
Commit
9cf716e
·
1 Parent(s): be47ebd

improve code example and correct link

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -6,7 +6,7 @@ language:
6
  # GeNTE Evaluator
7
 
8
  The **Gender-Neutral Translation (GeNTE) Evaluator** is a sequence classification model used for evaluating inclusive rewriting and translations into Italian with the [GeNTE corpus](https://huggingface.co/datasets/FBK-MT/GeNTE).
9
- It is built by fine-tuning the RoBERTa-based [UmBERTo model](https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1).
10
 
11
  More details on the training process and the reproducibility can be found in the [official repository](https://github.com/hlt-mt/fbk-NEUTR-evAL/blob/main/solutions/GeNTE.md) and the [paper](https://aclanthology.org/2024.eacl-short.23/).
12
 
@@ -16,18 +16,19 @@ You can use the GeNTE Evaluator as follows:
16
 
17
  ```
18
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
19
 
20
  # load the tokenizer of UmBERTo
21
- tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-wikipedia-uncased-v1", do_lower_case=False)
22
 
23
  # load GeNTE Evaluator
24
  model = AutoModelForSequenceClassification.from_pretrained("FBK-MT/GeNTE-evaluator")
25
 
26
  # neutral example
27
- sample = "Condividiamo il parere di chi ha presentato la relazione
28
- che ha posto notevole enfasi sull'informazione in relazione ai rischi e sulla trasparenza,
29
- in particolare nel campo sanitario e della sicurezza."
30
- input = tokenizer(sample, return_tensors='pt')
31
 
32
  with torch.no_grad():
33
  probs = model(**input).logits
 
6
  # GeNTE Evaluator
7
 
8
  The **Gender-Neutral Translation (GeNTE) Evaluator** is a sequence classification model used for evaluating inclusive rewriting and translations into Italian with the [GeNTE corpus](https://huggingface.co/datasets/FBK-MT/GeNTE).
9
+ It is built by fine-tuning the RoBERTa-based [UmBERTo model](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1).
10
 
11
  More details on the training process and the reproducibility can be found in the [official repository](https://github.com/hlt-mt/fbk-NEUTR-evAL/blob/main/solutions/GeNTE.md) and the [paper](https://aclanthology.org/2024.eacl-short.23/).
12
 
 
16
 
17
  ```
18
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
19
+ import torch
20
 
21
  # load the tokenizer of UmBERTo
22
+ tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-commoncrawl-cased-v1", do_lower_case=False)
23
 
24
  # load GeNTE Evaluator
25
  model = AutoModelForSequenceClassification.from_pretrained("FBK-MT/GeNTE-evaluator")
26
 
27
  # neutral example
28
+ sample = ("Condividiamo il parere di chi ha presentato la relazione che ha posto "
29
+ "notevole enfasi sull'informazione in relazione ai rischi e sulla trasparenza, "
30
+ "in particolare nel campo sanitario e della sicurezza.")
31
+ input = tokenizer(sample, return_tensors='pt', truncation=True, max_length=64)
32
 
33
  with torch.no_grad():
34
  probs = model(**input).logits