--- pipeline_tag: token-classification tags: - named-entity-recognition - sequence-tagger-model widget: - text: Mit navn er Amadeus Wolfgang, og jeg bor i Berlin inference: parameters: aggregation_strategy: simple grouped_entities: true language: - da --- xlm-roberta model trained on daner, performing 95 f1-Macro on test set. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner") ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner") nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") example = "Mit navn er Amadeus Wolfgang, og jeg bor i Berlin" ner_results = nlp(example) print(ner_results) ```