EvaOr commited on
Commit
f70544e
1 Parent(s): 3ae3380

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1366.10 +/- 535.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9deebd5c03e30a2e52158ad48cc8c8b0f8467bb518d9797fa057a0d22abb84d
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efcab97d940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efcab97d9d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efcab97da60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efcab97daf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efcab97db80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efcab97dc10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efcab97dca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efcab97dd30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efcab97ddc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efcab97de50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efcab97dee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efcab97df70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efcab8febc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680254984246098178,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALzJkj9WE80+rrnqPldNzD8h2o8+jy1rP2FdQr/3PeK+shKoPvWfrL+J+2K/lrugvNdWrb6ODco+2TaKPfpcf74mGSQ/UsOYP/sCM7/covo/drLRvhwIL8DCXbM/q4YBvtlWqL/xUgA/gRkUwLyCPj8v61e+4rDNvlFd4T7r78M/YuCuvzJNH7/1Yv++ahsev8eXI74r37e/pzU8v2CRKbw9a3i/miq+Pjv0Pz+iJrU/qkkTvx3OQD0Dr1M/AcgoQBGPUb+ZeSTANA/iPhnpGD7ZVqi/8VIAP6dB3T68gj4/pb7wvqQJor61qOw+ql1xv06DQb6faGU8l/rJPtBq173cREY//43WvWNJHb/l+7W/hIIav3UY5j7IGK49L/DFvYZA575r/tQ+21doP7TUJj1G6nVAasgqP+P7Br6h9Ii92Vaov/FSAD+nQd0+vII+P/fDCj6Z1fg/cjSAv2bAdT+HIZk/kt6EP6YFAD4ckme9WYiTvyOgpT+/97E+Ib0DP76TDL5/eou+OwkHvj3MKb84TqA/NvOwvmdK0z4DGWo+Wp2Dvmrjnj9lrDW+1rSyPo+nQj/xUgA/p0HdPjgArL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+hQm3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP67KPQAAAABleu6/AAAAAAEeCL4AAAAA+NHfPwAAAABuWpO9AAAAALcg/j8AAAAA3qKQPQAAAAAkHOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7cBPtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI53eD0AAAAAVY7ovwAAAADvmUm9AAAAANey9T8AAAAAEdz7PAAAAABm59o/AAAAAHhscj0AAAAA8mL3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhDw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA4Rms8AAAAAE7d/L8AAAAAJDiTPAAAAABSGOs/AAAAAIBHn70AAAAAIwDuPwAAAACiLjO8AAAAAOQj3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMh7e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATsstPQAAAACzoeO/AAAAAJ6fH70AAAAAcfvtPwAAAABwtKO7AAAAAKbK6D8AAAAAtTjCvAAAAABBEue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrHJ9/jKgaMAWyUTegDjAF0lEdAtBzEvWYnfHV9lChoBkdAndK1Z9uxbGgHTegDaAhHQLQcxyQPqcF1fZQoaAZHQJ6veQgcLjRoB03oA2gIR0C0Ig7Gecx1dX2UKGgGR0Ccv5NFBppOaAdN6ANoCEdAtCOiAavRq3V9lChoBkdAnYp1UVBUrGgHTegDaAhHQLQlQAjIJZ51fZQoaAZHQJL4OpNsWO9oB03oA2gIR0C0JUHDR+jNdX2UKGgGR0CYBdhHLA58aAdN6ANoCEdAtCjyjynUD3V9lChoBkdAkDgCJwbVBmgHTegDaAhHQLQqkLWqcVh1fZQoaAZHQJm3pjQRf4RoB03oA2gIR0C0LGpng5zYdX2UKGgGR0CVdBl8gIQfaAdN6ANoCEdAtCxtUFSsKnV9lChoBkdAkRDc8gZCOWgHTegDaAhHQLQxrG8Empl1fZQoaAZHQJTGZ4xDb8FoB03oA2gIR0C0M1RiobXIdX2UKGgGR0CXobcPe54GaAdN6ANoCEdAtDTo7JW/8HV9lChoBkdAm6alLBbfQGgHTegDaAhHQLQ06otthux1fZQoaAZHQJM1YAwPAfxoB03oA2gIR0C0OK0wi7kGdX2UKGgGR0CY21MwUQCkaAdN6ANoCEdAtDpLp/wy7HV9lChoBkdAdHfQ/5ckdGgHTegDaAhHQLQ8Qe18b711fZQoaAZHQJRK+NBF/hFoB03oA2gIR0C0PERE0BOpdX2UKGgGR0CYOe1LJ0W/aAdN6ANoCEdAtEF5ndweeXV9lChoBkdAmoEXg5zYEmgHTegDaAhHQLRDD2/zreJ1fZQoaAZHQJeUuP+4smRoB03oA2gIR0C0RKEhJRO2dX2UKGgGR0CVfARwIdELaAdN6ANoCEdAtESiuU2UCHV9lChoBkdAk4+fo/zJ62gHTegDaAhHQLRIT/HYHxB1fZQoaAZHQJm1AoLG7z1oB03oA2gIR0C0Se6Ss8xLdX2UKGgGR0Cc4ZpwCKaYaAdN6ANoCEdAtEvZP420iXV9lChoBkdAltEuQZGayGgHTegDaAhHQLRL25d4Vyp1fZQoaAZHQJiBgYUFjd5oB03oA2gIR0C0UQebiIcjdX2UKGgGR0CPReEBbOeKaAdN6ANoCEdAtFKxDMNc4nV9lChoBkdAgMks4T9KmWgHTegDaAhHQLRUTh/RVp91fZQoaAZHQJVbIl4TsY5oB03oA2gIR0C0VE/g3tKJdX2UKGgGR0CVUysK9f1IaAdN6ANoCEdAtFf+G9HtnnV9lChoBkdAnskGXb/OuGgHTegDaAhHQLRZjfms/6h1fZQoaAZHQJJ7lfkWAPNoB03oA2gIR0C0W4r4i5d4dX2UKGgGR0Caswx1xKg7aAdN6ANoCEdAtFuNNnGsFXV9lChoBkdAm5L/sE7nxWgHTegDaAhHQLRgsoDxLCh1fZQoaAZHQJ0Tjj3mFJxoB03oA2gIR0C0Ykh42S+ydX2UKGgGR0CWcycghbGFaAdN6ANoCEdAtGPqrIYFaHV9lChoBkdAnJVyv1UVBWgHTegDaAhHQLRj7F5OafB1fZQoaAZHQJm6d2q1gIBoB03oA2gIR0C0aPGKIi1RdX2UKGgGR0CbLOR1HOKPaAdN6ANoCEdAtGtxCBwuNHV9lChoBkdAmh2cpgCwKWgHTegDaAhHQLRtxjdHlOp1fZQoaAZHQJnHge9zwMJoB03oA2gIR0C0bchbSqlxdX2UKGgGR0Ce2HFEiMYNaAdN6ANoCEdAtHIj2WY4Q3V9lChoBkdAnQ3IkmhM8GgHTegDaAhHQLRzyVcUuct1fZQoaAZHQJYa25qdpZhoB03oA2gIR0C0dWxmTTvzdX2UKGgGR0Cc7oV1fVqfaAdN6ANoCEdAtHVuL9/BnHV9lChoBkdAlcUbYTTOPmgHTegDaAhHQLR5IE7W/ah1fZQoaAZHQJrYbluFYdRoB03oA2gIR0C0ezlYISlFdX2UKGgGR0Cd9oCrcTJyaAdN6ANoCEdAtH2gZn+Q2nV9lChoBkdAm+WewLVnVWgHTegDaAhHQLR9ouogmqp1fZQoaAZHQJ2cRJHy3CtoB03oA2gIR0C0gdbLyMDPdX2UKGgGR0CbmnecQRPHaAdN6ANoCEdAtINxpPAO8XV9lChoBkdAnZlbrX18LWgHTegDaAhHQLSFF6oVEeB1fZQoaAZHQJgwH8gpz91oB03oA2gIR0C0hRl2icoZdX2UKGgGR0Cc5czImw7laAdN6ANoCEdAtIjEuctoSXV9lChoBkdAnBPoVZcLSmgHTegDaAhHQLSK3qKgqVh1fZQoaAZHQJsRZxKg7HRoB03oA2gIR0C0jU7idat+dX2UKGgGR0CawB4c3l0YaAdN6ANoCEdAtI1Rd4Vym3V9lChoBkdAmY6TJ+2E02gHTegDaAhHQLSRfg7HQyB1fZQoaAZHQJhzPSJCSidoB03oA2gIR0C0kxsDbJwLdX2UKGgGR0CXKYT6SDAaaAdN6ANoCEdAtJSyeGwiaHV9lChoBkdAlNCMcuJ1q2gHTegDaAhHQLSUtC8e0Xx1fZQoaAZHQJhVIqI7/4toB03oA2gIR0C0mFq86FM7dX2UKGgGR0CbUbOB19v1aAdN6ANoCEdAtJpo9/z8QHV9lChoBkdAmrDgBT4tYmgHTegDaAhHQLSc23DNyHV1fZQoaAZHQJyqB4qwyIpoB03oA2gIR0C0nN38XN1RdX2UKGgGR0Cbk8wxFiKBaAdN6ANoCEdAtKDlhAnlXHV9lChoBkdAnMXV5OafBmgHTegDaAhHQLSibP+n62x1fZQoaAZHQJwJEGt6ol5oB03oA2gIR0C0pAc+iaiLdX2UKGgGR0CdAkE9t/FzaAdN6ANoCEdAtKQI2vStvHV9lChoBkdAk21tP+GXX2gHTegDaAhHQLSnw3IMjNZ1fZQoaAZHQJU03T5O8ChoB03oA2gIR0C0qddTcZccdX2UKGgGR0CaKmkiUxEfaAdN6ANoCEdAtKw6qCHymXV9lChoBkdAl/CgFHJ9zGgHTegDaAhHQLSsPUfgaWJ1fZQoaAZHQJdgjqfOD8NoB03oA2gIR0C0sHXJ9y93dX2UKGgGR0CSUU4Wk8A8aAdN6ANoCEdAtLIHYh+vyXV9lChoBkdAjhS/6oESumgHTegDaAhHQLSzpVyFPBV1fZQoaAZHQJO2sQiA2AJoB03oA2gIR0C0s6c4ku6FdX2UKGgGR0CVcnNjslcAaAdN6ANoCEdAtLdpIYm9hHV9lChoBkdAdKeNgjQiRmgHTegDaAhHQLS5lZWq95B1fZQoaAZHQJBDzt5UtI1oB03oA2gIR0C0vA7sa86FdX2UKGgGR0CUltlpoK2KaAdN6ANoCEdAtLwRgF5fMXV9lChoBkdAkQfILsrupmgHTegDaAhHQLTAL0r9VFR1fZQoaAZHQJBfyE25xzdoB03oA2gIR0C0wdBVMmF8dX2UKGgGR0CPAx+iJwbVaAdN6ANoCEdAtMNjfcer/HV9lChoBkdAjwJXQ2MsH2gHTegDaAhHQLTDZSpR4yJ1fZQoaAZHQIKtjHyVfNRoB03oA2gIR0C0xwYi5d4WdX2UKGgGR0CWSHQ+2VmjaAdN6ANoCEdAtMk3eYUnHHV9lChoBkdAmzK9gfEGaGgHTegDaAhHQLTLkuUliSd1fZQoaAZHQJtfzyOJcgRoB03oA2gIR0C0y5WSZBszdX2UKGgGR0CbjilrM1TBaAdN6ANoCEdAtM/Cj0th/nV9lChoBkdAiqZJhnanJmgHTegDaAhHQLTRaKD01651fZQoaAZHQJKk5VrAP/doB03oA2gIR0C00vydWhh6dX2UKGgGR0CN1AiWVu76aAdN6ANoCEdAtNL+ujh1knV9lChoBkdAnlf9cry1/mgHTegDaAhHQLTWt/ustCl1fZQoaAZHQJpbLwjMV1xoB03oA2gIR0C02PfEKmbcdX2UKGgGR0CVAdeA/cFhaAdN6ANoCEdAtNtmCtihFnV9lChoBkdAmMRMU21lXmgHTegDaAhHQLTbaIHTqjd1fZQoaAZHQJQLbFzdUKloB03oA2gIR0C033KqCHymdX2UKGgGR0CNQFaQFLWaaAdN6ANoCEdAtOEeCoS+QHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b7656f32e35d656b2a2e2523b6e6b26b912ce79006aa7a16cea39d7b092dd2
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d33e25192b20c87d6d1e0c48597c1cef32645a08ed7a50cc94924c8aafc3a7f0
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efcab97d940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efcab97d9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efcab97da60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efcab97daf0>", "_build": "<function ActorCriticPolicy._build at 0x7efcab97db80>", "forward": "<function ActorCriticPolicy.forward at 0x7efcab97dc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efcab97dca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efcab97dd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7efcab97ddc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efcab97de50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efcab97dee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efcab97df70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efcab8febc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680254984246098178, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALzJkj9WE80+rrnqPldNzD8h2o8+jy1rP2FdQr/3PeK+shKoPvWfrL+J+2K/lrugvNdWrb6ODco+2TaKPfpcf74mGSQ/UsOYP/sCM7/covo/drLRvhwIL8DCXbM/q4YBvtlWqL/xUgA/gRkUwLyCPj8v61e+4rDNvlFd4T7r78M/YuCuvzJNH7/1Yv++ahsev8eXI74r37e/pzU8v2CRKbw9a3i/miq+Pjv0Pz+iJrU/qkkTvx3OQD0Dr1M/AcgoQBGPUb+ZeSTANA/iPhnpGD7ZVqi/8VIAP6dB3T68gj4/pb7wvqQJor61qOw+ql1xv06DQb6faGU8l/rJPtBq173cREY//43WvWNJHb/l+7W/hIIav3UY5j7IGK49L/DFvYZA575r/tQ+21doP7TUJj1G6nVAasgqP+P7Br6h9Ii92Vaov/FSAD+nQd0+vII+P/fDCj6Z1fg/cjSAv2bAdT+HIZk/kt6EP6YFAD4ckme9WYiTvyOgpT+/97E+Ib0DP76TDL5/eou+OwkHvj3MKb84TqA/NvOwvmdK0z4DGWo+Wp2Dvmrjnj9lrDW+1rSyPo+nQj/xUgA/p0HdPjgArL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+hQm3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP67KPQAAAABleu6/AAAAAAEeCL4AAAAA+NHfPwAAAABuWpO9AAAAALcg/j8AAAAA3qKQPQAAAAAkHOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7cBPtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI53eD0AAAAAVY7ovwAAAADvmUm9AAAAANey9T8AAAAAEdz7PAAAAABm59o/AAAAAHhscj0AAAAA8mL3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhDw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA4Rms8AAAAAE7d/L8AAAAAJDiTPAAAAABSGOs/AAAAAIBHn70AAAAAIwDuPwAAAACiLjO8AAAAAOQj3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMh7e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATsstPQAAAACzoeO/AAAAAJ6fH70AAAAAcfvtPwAAAABwtKO7AAAAAKbK6D8AAAAAtTjCvAAAAABBEue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrHJ9/jKgaMAWyUTegDjAF0lEdAtBzEvWYnfHV9lChoBkdAndK1Z9uxbGgHTegDaAhHQLQcxyQPqcF1fZQoaAZHQJ6veQgcLjRoB03oA2gIR0C0Ig7Gecx1dX2UKGgGR0Ccv5NFBppOaAdN6ANoCEdAtCOiAavRq3V9lChoBkdAnYp1UVBUrGgHTegDaAhHQLQlQAjIJZ51fZQoaAZHQJL4OpNsWO9oB03oA2gIR0C0JUHDR+jNdX2UKGgGR0CYBdhHLA58aAdN6ANoCEdAtCjyjynUD3V9lChoBkdAkDgCJwbVBmgHTegDaAhHQLQqkLWqcVh1fZQoaAZHQJm3pjQRf4RoB03oA2gIR0C0LGpng5zYdX2UKGgGR0CVdBl8gIQfaAdN6ANoCEdAtCxtUFSsKnV9lChoBkdAkRDc8gZCOWgHTegDaAhHQLQxrG8Empl1fZQoaAZHQJTGZ4xDb8FoB03oA2gIR0C0M1RiobXIdX2UKGgGR0CXobcPe54GaAdN6ANoCEdAtDTo7JW/8HV9lChoBkdAm6alLBbfQGgHTegDaAhHQLQ06otthux1fZQoaAZHQJM1YAwPAfxoB03oA2gIR0C0OK0wi7kGdX2UKGgGR0CY21MwUQCkaAdN6ANoCEdAtDpLp/wy7HV9lChoBkdAdHfQ/5ckdGgHTegDaAhHQLQ8Qe18b711fZQoaAZHQJRK+NBF/hFoB03oA2gIR0C0PERE0BOpdX2UKGgGR0CYOe1LJ0W/aAdN6ANoCEdAtEF5ndweeXV9lChoBkdAmoEXg5zYEmgHTegDaAhHQLRDD2/zreJ1fZQoaAZHQJeUuP+4smRoB03oA2gIR0C0RKEhJRO2dX2UKGgGR0CVfARwIdELaAdN6ANoCEdAtESiuU2UCHV9lChoBkdAk4+fo/zJ62gHTegDaAhHQLRIT/HYHxB1fZQoaAZHQJm1AoLG7z1oB03oA2gIR0C0Se6Ss8xLdX2UKGgGR0Cc4ZpwCKaYaAdN6ANoCEdAtEvZP420iXV9lChoBkdAltEuQZGayGgHTegDaAhHQLRL25d4Vyp1fZQoaAZHQJiBgYUFjd5oB03oA2gIR0C0UQebiIcjdX2UKGgGR0CPReEBbOeKaAdN6ANoCEdAtFKxDMNc4nV9lChoBkdAgMks4T9KmWgHTegDaAhHQLRUTh/RVp91fZQoaAZHQJVbIl4TsY5oB03oA2gIR0C0VE/g3tKJdX2UKGgGR0CVUysK9f1IaAdN6ANoCEdAtFf+G9HtnnV9lChoBkdAnskGXb/OuGgHTegDaAhHQLRZjfms/6h1fZQoaAZHQJJ7lfkWAPNoB03oA2gIR0C0W4r4i5d4dX2UKGgGR0Caswx1xKg7aAdN6ANoCEdAtFuNNnGsFXV9lChoBkdAm5L/sE7nxWgHTegDaAhHQLRgsoDxLCh1fZQoaAZHQJ0Tjj3mFJxoB03oA2gIR0C0Ykh42S+ydX2UKGgGR0CWcycghbGFaAdN6ANoCEdAtGPqrIYFaHV9lChoBkdAnJVyv1UVBWgHTegDaAhHQLRj7F5OafB1fZQoaAZHQJm6d2q1gIBoB03oA2gIR0C0aPGKIi1RdX2UKGgGR0CbLOR1HOKPaAdN6ANoCEdAtGtxCBwuNHV9lChoBkdAmh2cpgCwKWgHTegDaAhHQLRtxjdHlOp1fZQoaAZHQJnHge9zwMJoB03oA2gIR0C0bchbSqlxdX2UKGgGR0Ce2HFEiMYNaAdN6ANoCEdAtHIj2WY4Q3V9lChoBkdAnQ3IkmhM8GgHTegDaAhHQLRzyVcUuct1fZQoaAZHQJYa25qdpZhoB03oA2gIR0C0dWxmTTvzdX2UKGgGR0Cc7oV1fVqfaAdN6ANoCEdAtHVuL9/BnHV9lChoBkdAlcUbYTTOPmgHTegDaAhHQLR5IE7W/ah1fZQoaAZHQJrYbluFYdRoB03oA2gIR0C0ezlYISlFdX2UKGgGR0Cd9oCrcTJyaAdN6ANoCEdAtH2gZn+Q2nV9lChoBkdAm+WewLVnVWgHTegDaAhHQLR9ouogmqp1fZQoaAZHQJ2cRJHy3CtoB03oA2gIR0C0gdbLyMDPdX2UKGgGR0CbmnecQRPHaAdN6ANoCEdAtINxpPAO8XV9lChoBkdAnZlbrX18LWgHTegDaAhHQLSFF6oVEeB1fZQoaAZHQJgwH8gpz91oB03oA2gIR0C0hRl2icoZdX2UKGgGR0Cc5czImw7laAdN6ANoCEdAtIjEuctoSXV9lChoBkdAnBPoVZcLSmgHTegDaAhHQLSK3qKgqVh1fZQoaAZHQJsRZxKg7HRoB03oA2gIR0C0jU7idat+dX2UKGgGR0CawB4c3l0YaAdN6ANoCEdAtI1Rd4Vym3V9lChoBkdAmY6TJ+2E02gHTegDaAhHQLSRfg7HQyB1fZQoaAZHQJhzPSJCSidoB03oA2gIR0C0kxsDbJwLdX2UKGgGR0CXKYT6SDAaaAdN6ANoCEdAtJSyeGwiaHV9lChoBkdAlNCMcuJ1q2gHTegDaAhHQLSUtC8e0Xx1fZQoaAZHQJhVIqI7/4toB03oA2gIR0C0mFq86FM7dX2UKGgGR0CbUbOB19v1aAdN6ANoCEdAtJpo9/z8QHV9lChoBkdAmrDgBT4tYmgHTegDaAhHQLSc23DNyHV1fZQoaAZHQJyqB4qwyIpoB03oA2gIR0C0nN38XN1RdX2UKGgGR0Cbk8wxFiKBaAdN6ANoCEdAtKDlhAnlXHV9lChoBkdAnMXV5OafBmgHTegDaAhHQLSibP+n62x1fZQoaAZHQJwJEGt6ol5oB03oA2gIR0C0pAc+iaiLdX2UKGgGR0CdAkE9t/FzaAdN6ANoCEdAtKQI2vStvHV9lChoBkdAk21tP+GXX2gHTegDaAhHQLSnw3IMjNZ1fZQoaAZHQJU03T5O8ChoB03oA2gIR0C0qddTcZccdX2UKGgGR0CaKmkiUxEfaAdN6ANoCEdAtKw6qCHymXV9lChoBkdAl/CgFHJ9zGgHTegDaAhHQLSsPUfgaWJ1fZQoaAZHQJdgjqfOD8NoB03oA2gIR0C0sHXJ9y93dX2UKGgGR0CSUU4Wk8A8aAdN6ANoCEdAtLIHYh+vyXV9lChoBkdAjhS/6oESumgHTegDaAhHQLSzpVyFPBV1fZQoaAZHQJO2sQiA2AJoB03oA2gIR0C0s6c4ku6FdX2UKGgGR0CVcnNjslcAaAdN6ANoCEdAtLdpIYm9hHV9lChoBkdAdKeNgjQiRmgHTegDaAhHQLS5lZWq95B1fZQoaAZHQJBDzt5UtI1oB03oA2gIR0C0vA7sa86FdX2UKGgGR0CUltlpoK2KaAdN6ANoCEdAtLwRgF5fMXV9lChoBkdAkQfILsrupmgHTegDaAhHQLTAL0r9VFR1fZQoaAZHQJBfyE25xzdoB03oA2gIR0C0wdBVMmF8dX2UKGgGR0CPAx+iJwbVaAdN6ANoCEdAtMNjfcer/HV9lChoBkdAjwJXQ2MsH2gHTegDaAhHQLTDZSpR4yJ1fZQoaAZHQIKtjHyVfNRoB03oA2gIR0C0xwYi5d4WdX2UKGgGR0CWSHQ+2VmjaAdN6ANoCEdAtMk3eYUnHHV9lChoBkdAmzK9gfEGaGgHTegDaAhHQLTLkuUliSd1fZQoaAZHQJtfzyOJcgRoB03oA2gIR0C0y5WSZBszdX2UKGgGR0CbjilrM1TBaAdN6ANoCEdAtM/Cj0th/nV9lChoBkdAiqZJhnanJmgHTegDaAhHQLTRaKD01651fZQoaAZHQJKk5VrAP/doB03oA2gIR0C00vydWhh6dX2UKGgGR0CN1AiWVu76aAdN6ANoCEdAtNL+ujh1knV9lChoBkdAnlf9cry1/mgHTegDaAhHQLTWt/ustCl1fZQoaAZHQJpbLwjMV1xoB03oA2gIR0C02PfEKmbcdX2UKGgGR0CVAdeA/cFhaAdN6ANoCEdAtNtmCtihFnV9lChoBkdAmMRMU21lXmgHTegDaAhHQLTbaIHTqjd1fZQoaAZHQJQLbFzdUKloB03oA2gIR0C033KqCHymdX2UKGgGR0CNQFaQFLWaaAdN6ANoCEdAtOEeCoS+QHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:173a55965ca31c6c950a4172c829af3f1ec54caa2865d249853113bd1c5d0191
3
+ size 1024827
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1366.0991147695865, "std_reward": 535.6325525338171, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T10:41:19.817384"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d927d8d024ff5901b1e1f86645632918a3ce9afd195cdcd07668b31f837991b
3
+ size 2136