Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1366.10 +/- 535.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9deebd5c03e30a2e52158ad48cc8c8b0f8467bb518d9797fa057a0d22abb84d
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efcab97d940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efcab97d9d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efcab97da60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efcab97daf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efcab97db80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efcab97dc10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efcab97dca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efcab97dd30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efcab97ddc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efcab97de50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efcab97dee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efcab97df70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efcab8febc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680254984246098178,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALzJkj9WE80+rrnqPldNzD8h2o8+jy1rP2FdQr/3PeK+shKoPvWfrL+J+2K/lrugvNdWrb6ODco+2TaKPfpcf74mGSQ/UsOYP/sCM7/covo/drLRvhwIL8DCXbM/q4YBvtlWqL/xUgA/gRkUwLyCPj8v61e+4rDNvlFd4T7r78M/YuCuvzJNH7/1Yv++ahsev8eXI74r37e/pzU8v2CRKbw9a3i/miq+Pjv0Pz+iJrU/qkkTvx3OQD0Dr1M/AcgoQBGPUb+ZeSTANA/iPhnpGD7ZVqi/8VIAP6dB3T68gj4/pb7wvqQJor61qOw+ql1xv06DQb6faGU8l/rJPtBq173cREY//43WvWNJHb/l+7W/hIIav3UY5j7IGK49L/DFvYZA575r/tQ+21doP7TUJj1G6nVAasgqP+P7Br6h9Ii92Vaov/FSAD+nQd0+vII+P/fDCj6Z1fg/cjSAv2bAdT+HIZk/kt6EP6YFAD4ckme9WYiTvyOgpT+/97E+Ib0DP76TDL5/eou+OwkHvj3MKb84TqA/NvOwvmdK0z4DGWo+Wp2Dvmrjnj9lrDW+1rSyPo+nQj/xUgA/p0HdPjgArL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+hQm3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP67KPQAAAABleu6/AAAAAAEeCL4AAAAA+NHfPwAAAABuWpO9AAAAALcg/j8AAAAA3qKQPQAAAAAkHOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7cBPtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI53eD0AAAAAVY7ovwAAAADvmUm9AAAAANey9T8AAAAAEdz7PAAAAABm59o/AAAAAHhscj0AAAAA8mL3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhDw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA4Rms8AAAAAE7d/L8AAAAAJDiTPAAAAABSGOs/AAAAAIBHn70AAAAAIwDuPwAAAACiLjO8AAAAAOQj3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMh7e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATsstPQAAAACzoeO/AAAAAJ6fH70AAAAAcfvtPwAAAABwtKO7AAAAAKbK6D8AAAAAtTjCvAAAAABBEue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrHJ9/jKgaMAWyUTegDjAF0lEdAtBzEvWYnfHV9lChoBkdAndK1Z9uxbGgHTegDaAhHQLQcxyQPqcF1fZQoaAZHQJ6veQgcLjRoB03oA2gIR0C0Ig7Gecx1dX2UKGgGR0Ccv5NFBppOaAdN6ANoCEdAtCOiAavRq3V9lChoBkdAnYp1UVBUrGgHTegDaAhHQLQlQAjIJZ51fZQoaAZHQJL4OpNsWO9oB03oA2gIR0C0JUHDR+jNdX2UKGgGR0CYBdhHLA58aAdN6ANoCEdAtCjyjynUD3V9lChoBkdAkDgCJwbVBmgHTegDaAhHQLQqkLWqcVh1fZQoaAZHQJm3pjQRf4RoB03oA2gIR0C0LGpng5zYdX2UKGgGR0CVdBl8gIQfaAdN6ANoCEdAtCxtUFSsKnV9lChoBkdAkRDc8gZCOWgHTegDaAhHQLQxrG8Empl1fZQoaAZHQJTGZ4xDb8FoB03oA2gIR0C0M1RiobXIdX2UKGgGR0CXobcPe54GaAdN6ANoCEdAtDTo7JW/8HV9lChoBkdAm6alLBbfQGgHTegDaAhHQLQ06otthux1fZQoaAZHQJM1YAwPAfxoB03oA2gIR0C0OK0wi7kGdX2UKGgGR0CY21MwUQCkaAdN6ANoCEdAtDpLp/wy7HV9lChoBkdAdHfQ/5ckdGgHTegDaAhHQLQ8Qe18b711fZQoaAZHQJRK+NBF/hFoB03oA2gIR0C0PERE0BOpdX2UKGgGR0CYOe1LJ0W/aAdN6ANoCEdAtEF5ndweeXV9lChoBkdAmoEXg5zYEmgHTegDaAhHQLRDD2/zreJ1fZQoaAZHQJeUuP+4smRoB03oA2gIR0C0RKEhJRO2dX2UKGgGR0CVfARwIdELaAdN6ANoCEdAtESiuU2UCHV9lChoBkdAk4+fo/zJ62gHTegDaAhHQLRIT/HYHxB1fZQoaAZHQJm1AoLG7z1oB03oA2gIR0C0Se6Ss8xLdX2UKGgGR0Cc4ZpwCKaYaAdN6ANoCEdAtEvZP420iXV9lChoBkdAltEuQZGayGgHTegDaAhHQLRL25d4Vyp1fZQoaAZHQJiBgYUFjd5oB03oA2gIR0C0UQebiIcjdX2UKGgGR0CPReEBbOeKaAdN6ANoCEdAtFKxDMNc4nV9lChoBkdAgMks4T9KmWgHTegDaAhHQLRUTh/RVp91fZQoaAZHQJVbIl4TsY5oB03oA2gIR0C0VE/g3tKJdX2UKGgGR0CVUysK9f1IaAdN6ANoCEdAtFf+G9HtnnV9lChoBkdAnskGXb/OuGgHTegDaAhHQLRZjfms/6h1fZQoaAZHQJJ7lfkWAPNoB03oA2gIR0C0W4r4i5d4dX2UKGgGR0Caswx1xKg7aAdN6ANoCEdAtFuNNnGsFXV9lChoBkdAm5L/sE7nxWgHTegDaAhHQLRgsoDxLCh1fZQoaAZHQJ0Tjj3mFJxoB03oA2gIR0C0Ykh42S+ydX2UKGgGR0CWcycghbGFaAdN6ANoCEdAtGPqrIYFaHV9lChoBkdAnJVyv1UVBWgHTegDaAhHQLRj7F5OafB1fZQoaAZHQJm6d2q1gIBoB03oA2gIR0C0aPGKIi1RdX2UKGgGR0CbLOR1HOKPaAdN6ANoCEdAtGtxCBwuNHV9lChoBkdAmh2cpgCwKWgHTegDaAhHQLRtxjdHlOp1fZQoaAZHQJnHge9zwMJoB03oA2gIR0C0bchbSqlxdX2UKGgGR0Ce2HFEiMYNaAdN6ANoCEdAtHIj2WY4Q3V9lChoBkdAnQ3IkmhM8GgHTegDaAhHQLRzyVcUuct1fZQoaAZHQJYa25qdpZhoB03oA2gIR0C0dWxmTTvzdX2UKGgGR0Cc7oV1fVqfaAdN6ANoCEdAtHVuL9/BnHV9lChoBkdAlcUbYTTOPmgHTegDaAhHQLR5IE7W/ah1fZQoaAZHQJrYbluFYdRoB03oA2gIR0C0ezlYISlFdX2UKGgGR0Cd9oCrcTJyaAdN6ANoCEdAtH2gZn+Q2nV9lChoBkdAm+WewLVnVWgHTegDaAhHQLR9ouogmqp1fZQoaAZHQJ2cRJHy3CtoB03oA2gIR0C0gdbLyMDPdX2UKGgGR0CbmnecQRPHaAdN6ANoCEdAtINxpPAO8XV9lChoBkdAnZlbrX18LWgHTegDaAhHQLSFF6oVEeB1fZQoaAZHQJgwH8gpz91oB03oA2gIR0C0hRl2icoZdX2UKGgGR0Cc5czImw7laAdN6ANoCEdAtIjEuctoSXV9lChoBkdAnBPoVZcLSmgHTegDaAhHQLSK3qKgqVh1fZQoaAZHQJsRZxKg7HRoB03oA2gIR0C0jU7idat+dX2UKGgGR0CawB4c3l0YaAdN6ANoCEdAtI1Rd4Vym3V9lChoBkdAmY6TJ+2E02gHTegDaAhHQLSRfg7HQyB1fZQoaAZHQJhzPSJCSidoB03oA2gIR0C0kxsDbJwLdX2UKGgGR0CXKYT6SDAaaAdN6ANoCEdAtJSyeGwiaHV9lChoBkdAlNCMcuJ1q2gHTegDaAhHQLSUtC8e0Xx1fZQoaAZHQJhVIqI7/4toB03oA2gIR0C0mFq86FM7dX2UKGgGR0CbUbOB19v1aAdN6ANoCEdAtJpo9/z8QHV9lChoBkdAmrDgBT4tYmgHTegDaAhHQLSc23DNyHV1fZQoaAZHQJyqB4qwyIpoB03oA2gIR0C0nN38XN1RdX2UKGgGR0Cbk8wxFiKBaAdN6ANoCEdAtKDlhAnlXHV9lChoBkdAnMXV5OafBmgHTegDaAhHQLSibP+n62x1fZQoaAZHQJwJEGt6ol5oB03oA2gIR0C0pAc+iaiLdX2UKGgGR0CdAkE9t/FzaAdN6ANoCEdAtKQI2vStvHV9lChoBkdAk21tP+GXX2gHTegDaAhHQLSnw3IMjNZ1fZQoaAZHQJU03T5O8ChoB03oA2gIR0C0qddTcZccdX2UKGgGR0CaKmkiUxEfaAdN6ANoCEdAtKw6qCHymXV9lChoBkdAl/CgFHJ9zGgHTegDaAhHQLSsPUfgaWJ1fZQoaAZHQJdgjqfOD8NoB03oA2gIR0C0sHXJ9y93dX2UKGgGR0CSUU4Wk8A8aAdN6ANoCEdAtLIHYh+vyXV9lChoBkdAjhS/6oESumgHTegDaAhHQLSzpVyFPBV1fZQoaAZHQJO2sQiA2AJoB03oA2gIR0C0s6c4ku6FdX2UKGgGR0CVcnNjslcAaAdN6ANoCEdAtLdpIYm9hHV9lChoBkdAdKeNgjQiRmgHTegDaAhHQLS5lZWq95B1fZQoaAZHQJBDzt5UtI1oB03oA2gIR0C0vA7sa86FdX2UKGgGR0CUltlpoK2KaAdN6ANoCEdAtLwRgF5fMXV9lChoBkdAkQfILsrupmgHTegDaAhHQLTAL0r9VFR1fZQoaAZHQJBfyE25xzdoB03oA2gIR0C0wdBVMmF8dX2UKGgGR0CPAx+iJwbVaAdN6ANoCEdAtMNjfcer/HV9lChoBkdAjwJXQ2MsH2gHTegDaAhHQLTDZSpR4yJ1fZQoaAZHQIKtjHyVfNRoB03oA2gIR0C0xwYi5d4WdX2UKGgGR0CWSHQ+2VmjaAdN6ANoCEdAtMk3eYUnHHV9lChoBkdAmzK9gfEGaGgHTegDaAhHQLTLkuUliSd1fZQoaAZHQJtfzyOJcgRoB03oA2gIR0C0y5WSZBszdX2UKGgGR0CbjilrM1TBaAdN6ANoCEdAtM/Cj0th/nV9lChoBkdAiqZJhnanJmgHTegDaAhHQLTRaKD01651fZQoaAZHQJKk5VrAP/doB03oA2gIR0C00vydWhh6dX2UKGgGR0CN1AiWVu76aAdN6ANoCEdAtNL+ujh1knV9lChoBkdAnlf9cry1/mgHTegDaAhHQLTWt/ustCl1fZQoaAZHQJpbLwjMV1xoB03oA2gIR0C02PfEKmbcdX2UKGgGR0CVAdeA/cFhaAdN6ANoCEdAtNtmCtihFnV9lChoBkdAmMRMU21lXmgHTegDaAhHQLTbaIHTqjd1fZQoaAZHQJQLbFzdUKloB03oA2gIR0C033KqCHymdX2UKGgGR0CNQFaQFLWaaAdN6ANoCEdAtOEeCoS+QHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0b7656f32e35d656b2a2e2523b6e6b26b912ce79006aa7a16cea39d7b092dd2
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d33e25192b20c87d6d1e0c48597c1cef32645a08ed7a50cc94924c8aafc3a7f0
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efcab97d940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efcab97d9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efcab97da60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efcab97daf0>", "_build": "<function ActorCriticPolicy._build at 0x7efcab97db80>", "forward": "<function ActorCriticPolicy.forward at 0x7efcab97dc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efcab97dca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efcab97dd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7efcab97ddc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efcab97de50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efcab97dee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efcab97df70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efcab8febc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680254984246098178, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALzJkj9WE80+rrnqPldNzD8h2o8+jy1rP2FdQr/3PeK+shKoPvWfrL+J+2K/lrugvNdWrb6ODco+2TaKPfpcf74mGSQ/UsOYP/sCM7/covo/drLRvhwIL8DCXbM/q4YBvtlWqL/xUgA/gRkUwLyCPj8v61e+4rDNvlFd4T7r78M/YuCuvzJNH7/1Yv++ahsev8eXI74r37e/pzU8v2CRKbw9a3i/miq+Pjv0Pz+iJrU/qkkTvx3OQD0Dr1M/AcgoQBGPUb+ZeSTANA/iPhnpGD7ZVqi/8VIAP6dB3T68gj4/pb7wvqQJor61qOw+ql1xv06DQb6faGU8l/rJPtBq173cREY//43WvWNJHb/l+7W/hIIav3UY5j7IGK49L/DFvYZA575r/tQ+21doP7TUJj1G6nVAasgqP+P7Br6h9Ii92Vaov/FSAD+nQd0+vII+P/fDCj6Z1fg/cjSAv2bAdT+HIZk/kt6EP6YFAD4ckme9WYiTvyOgpT+/97E+Ib0DP76TDL5/eou+OwkHvj3MKb84TqA/NvOwvmdK0z4DGWo+Wp2Dvmrjnj9lrDW+1rSyPo+nQj/xUgA/p0HdPjgArL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+hQm3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP67KPQAAAABleu6/AAAAAAEeCL4AAAAA+NHfPwAAAABuWpO9AAAAALcg/j8AAAAA3qKQPQAAAAAkHOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7cBPtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI53eD0AAAAAVY7ovwAAAADvmUm9AAAAANey9T8AAAAAEdz7PAAAAABm59o/AAAAAHhscj0AAAAA8mL3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhDw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA4Rms8AAAAAE7d/L8AAAAAJDiTPAAAAABSGOs/AAAAAIBHn70AAAAAIwDuPwAAAACiLjO8AAAAAOQj3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMh7e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATsstPQAAAACzoeO/AAAAAJ6fH70AAAAAcfvtPwAAAABwtKO7AAAAAKbK6D8AAAAAtTjCvAAAAABBEue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrHJ9/jKgaMAWyUTegDjAF0lEdAtBzEvWYnfHV9lChoBkdAndK1Z9uxbGgHTegDaAhHQLQcxyQPqcF1fZQoaAZHQJ6veQgcLjRoB03oA2gIR0C0Ig7Gecx1dX2UKGgGR0Ccv5NFBppOaAdN6ANoCEdAtCOiAavRq3V9lChoBkdAnYp1UVBUrGgHTegDaAhHQLQlQAjIJZ51fZQoaAZHQJL4OpNsWO9oB03oA2gIR0C0JUHDR+jNdX2UKGgGR0CYBdhHLA58aAdN6ANoCEdAtCjyjynUD3V9lChoBkdAkDgCJwbVBmgHTegDaAhHQLQqkLWqcVh1fZQoaAZHQJm3pjQRf4RoB03oA2gIR0C0LGpng5zYdX2UKGgGR0CVdBl8gIQfaAdN6ANoCEdAtCxtUFSsKnV9lChoBkdAkRDc8gZCOWgHTegDaAhHQLQxrG8Empl1fZQoaAZHQJTGZ4xDb8FoB03oA2gIR0C0M1RiobXIdX2UKGgGR0CXobcPe54GaAdN6ANoCEdAtDTo7JW/8HV9lChoBkdAm6alLBbfQGgHTegDaAhHQLQ06otthux1fZQoaAZHQJM1YAwPAfxoB03oA2gIR0C0OK0wi7kGdX2UKGgGR0CY21MwUQCkaAdN6ANoCEdAtDpLp/wy7HV9lChoBkdAdHfQ/5ckdGgHTegDaAhHQLQ8Qe18b711fZQoaAZHQJRK+NBF/hFoB03oA2gIR0C0PERE0BOpdX2UKGgGR0CYOe1LJ0W/aAdN6ANoCEdAtEF5ndweeXV9lChoBkdAmoEXg5zYEmgHTegDaAhHQLRDD2/zreJ1fZQoaAZHQJeUuP+4smRoB03oA2gIR0C0RKEhJRO2dX2UKGgGR0CVfARwIdELaAdN6ANoCEdAtESiuU2UCHV9lChoBkdAk4+fo/zJ62gHTegDaAhHQLRIT/HYHxB1fZQoaAZHQJm1AoLG7z1oB03oA2gIR0C0Se6Ss8xLdX2UKGgGR0Cc4ZpwCKaYaAdN6ANoCEdAtEvZP420iXV9lChoBkdAltEuQZGayGgHTegDaAhHQLRL25d4Vyp1fZQoaAZHQJiBgYUFjd5oB03oA2gIR0C0UQebiIcjdX2UKGgGR0CPReEBbOeKaAdN6ANoCEdAtFKxDMNc4nV9lChoBkdAgMks4T9KmWgHTegDaAhHQLRUTh/RVp91fZQoaAZHQJVbIl4TsY5oB03oA2gIR0C0VE/g3tKJdX2UKGgGR0CVUysK9f1IaAdN6ANoCEdAtFf+G9HtnnV9lChoBkdAnskGXb/OuGgHTegDaAhHQLRZjfms/6h1fZQoaAZHQJJ7lfkWAPNoB03oA2gIR0C0W4r4i5d4dX2UKGgGR0Caswx1xKg7aAdN6ANoCEdAtFuNNnGsFXV9lChoBkdAm5L/sE7nxWgHTegDaAhHQLRgsoDxLCh1fZQoaAZHQJ0Tjj3mFJxoB03oA2gIR0C0Ykh42S+ydX2UKGgGR0CWcycghbGFaAdN6ANoCEdAtGPqrIYFaHV9lChoBkdAnJVyv1UVBWgHTegDaAhHQLRj7F5OafB1fZQoaAZHQJm6d2q1gIBoB03oA2gIR0C0aPGKIi1RdX2UKGgGR0CbLOR1HOKPaAdN6ANoCEdAtGtxCBwuNHV9lChoBkdAmh2cpgCwKWgHTegDaAhHQLRtxjdHlOp1fZQoaAZHQJnHge9zwMJoB03oA2gIR0C0bchbSqlxdX2UKGgGR0Ce2HFEiMYNaAdN6ANoCEdAtHIj2WY4Q3V9lChoBkdAnQ3IkmhM8GgHTegDaAhHQLRzyVcUuct1fZQoaAZHQJYa25qdpZhoB03oA2gIR0C0dWxmTTvzdX2UKGgGR0Cc7oV1fVqfaAdN6ANoCEdAtHVuL9/BnHV9lChoBkdAlcUbYTTOPmgHTegDaAhHQLR5IE7W/ah1fZQoaAZHQJrYbluFYdRoB03oA2gIR0C0ezlYISlFdX2UKGgGR0Cd9oCrcTJyaAdN6ANoCEdAtH2gZn+Q2nV9lChoBkdAm+WewLVnVWgHTegDaAhHQLR9ouogmqp1fZQoaAZHQJ2cRJHy3CtoB03oA2gIR0C0gdbLyMDPdX2UKGgGR0CbmnecQRPHaAdN6ANoCEdAtINxpPAO8XV9lChoBkdAnZlbrX18LWgHTegDaAhHQLSFF6oVEeB1fZQoaAZHQJgwH8gpz91oB03oA2gIR0C0hRl2icoZdX2UKGgGR0Cc5czImw7laAdN6ANoCEdAtIjEuctoSXV9lChoBkdAnBPoVZcLSmgHTegDaAhHQLSK3qKgqVh1fZQoaAZHQJsRZxKg7HRoB03oA2gIR0C0jU7idat+dX2UKGgGR0CawB4c3l0YaAdN6ANoCEdAtI1Rd4Vym3V9lChoBkdAmY6TJ+2E02gHTegDaAhHQLSRfg7HQyB1fZQoaAZHQJhzPSJCSidoB03oA2gIR0C0kxsDbJwLdX2UKGgGR0CXKYT6SDAaaAdN6ANoCEdAtJSyeGwiaHV9lChoBkdAlNCMcuJ1q2gHTegDaAhHQLSUtC8e0Xx1fZQoaAZHQJhVIqI7/4toB03oA2gIR0C0mFq86FM7dX2UKGgGR0CbUbOB19v1aAdN6ANoCEdAtJpo9/z8QHV9lChoBkdAmrDgBT4tYmgHTegDaAhHQLSc23DNyHV1fZQoaAZHQJyqB4qwyIpoB03oA2gIR0C0nN38XN1RdX2UKGgGR0Cbk8wxFiKBaAdN6ANoCEdAtKDlhAnlXHV9lChoBkdAnMXV5OafBmgHTegDaAhHQLSibP+n62x1fZQoaAZHQJwJEGt6ol5oB03oA2gIR0C0pAc+iaiLdX2UKGgGR0CdAkE9t/FzaAdN6ANoCEdAtKQI2vStvHV9lChoBkdAk21tP+GXX2gHTegDaAhHQLSnw3IMjNZ1fZQoaAZHQJU03T5O8ChoB03oA2gIR0C0qddTcZccdX2UKGgGR0CaKmkiUxEfaAdN6ANoCEdAtKw6qCHymXV9lChoBkdAl/CgFHJ9zGgHTegDaAhHQLSsPUfgaWJ1fZQoaAZHQJdgjqfOD8NoB03oA2gIR0C0sHXJ9y93dX2UKGgGR0CSUU4Wk8A8aAdN6ANoCEdAtLIHYh+vyXV9lChoBkdAjhS/6oESumgHTegDaAhHQLSzpVyFPBV1fZQoaAZHQJO2sQiA2AJoB03oA2gIR0C0s6c4ku6FdX2UKGgGR0CVcnNjslcAaAdN6ANoCEdAtLdpIYm9hHV9lChoBkdAdKeNgjQiRmgHTegDaAhHQLS5lZWq95B1fZQoaAZHQJBDzt5UtI1oB03oA2gIR0C0vA7sa86FdX2UKGgGR0CUltlpoK2KaAdN6ANoCEdAtLwRgF5fMXV9lChoBkdAkQfILsrupmgHTegDaAhHQLTAL0r9VFR1fZQoaAZHQJBfyE25xzdoB03oA2gIR0C0wdBVMmF8dX2UKGgGR0CPAx+iJwbVaAdN6ANoCEdAtMNjfcer/HV9lChoBkdAjwJXQ2MsH2gHTegDaAhHQLTDZSpR4yJ1fZQoaAZHQIKtjHyVfNRoB03oA2gIR0C0xwYi5d4WdX2UKGgGR0CWSHQ+2VmjaAdN6ANoCEdAtMk3eYUnHHV9lChoBkdAmzK9gfEGaGgHTegDaAhHQLTLkuUliSd1fZQoaAZHQJtfzyOJcgRoB03oA2gIR0C0y5WSZBszdX2UKGgGR0CbjilrM1TBaAdN6ANoCEdAtM/Cj0th/nV9lChoBkdAiqZJhnanJmgHTegDaAhHQLTRaKD01651fZQoaAZHQJKk5VrAP/doB03oA2gIR0C00vydWhh6dX2UKGgGR0CN1AiWVu76aAdN6ANoCEdAtNL+ujh1knV9lChoBkdAnlf9cry1/mgHTegDaAhHQLTWt/ustCl1fZQoaAZHQJpbLwjMV1xoB03oA2gIR0C02PfEKmbcdX2UKGgGR0CVAdeA/cFhaAdN6ANoCEdAtNtmCtihFnV9lChoBkdAmMRMU21lXmgHTegDaAhHQLTbaIHTqjd1fZQoaAZHQJQLbFzdUKloB03oA2gIR0C033KqCHymdX2UKGgGR0CNQFaQFLWaaAdN6ANoCEdAtOEeCoS+QHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:173a55965ca31c6c950a4172c829af3f1ec54caa2865d249853113bd1c5d0191
|
3 |
+
size 1024827
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1366.0991147695865, "std_reward": 535.6325525338171, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T10:41:19.817384"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d927d8d024ff5901b1e1f86645632918a3ce9afd195cdcd07668b31f837991b
|
3 |
+
size 2136
|