import math import torch import triton import triton.language as tl @triton.heuristics( { "EVEN_N": lambda args: args["seqlen"] % args["BLOCK_N"] == 0, "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], } ) @triton.jit def _fwd_eva_prep_kv_kernel( K, # [b, h, n, d] V, # [b, h, n, d] PARAM_MU, # [1, h, 1, 1, d] PARAM_PHI, # [1, h, 1, 1, d] ChunkMask, # [b, h, n, 1] Out_RFA_K, # [b, h, c, d] Out_RFA_V, # [b, h, c, d] softmax_scale, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_mu_h, stride_phi_h, stride_mb, stride_mn, stride_ok_b, stride_ok_h, stride_ok_c, stride_ov_b, stride_ov_h, stride_ov_c, nheads, seqlen, nchunks, headdim, CACHE_KEY_SEQLEN, # TODO: why keeping this CACHE_KEY_NCHUNKS, # TODO: why keeping this CHUNKS_PER_BLOCK: tl.constexpr, CHUNK_SIZE: tl.constexpr, MASK_TYPE: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_N: tl.constexpr, ): start_n = tl.program_id(0) offs_bh = tl.program_id(1) offs_h = offs_bh % nheads offs_b = offs_bh // nheads # initialize offsets # we load BLOCK_N keys and values each time, and # reshape it to [CHUNKS_PER_BLOCK, CHUNK_SIZE] offs_c = tl.arange(0, CHUNKS_PER_BLOCK) offs_m = tl.arange(0, CHUNK_SIZE) offs_d = tl.arange(0, BLOCK_HEADDIM) k_ptrs = ( K + offs_b * stride_kb + offs_h * stride_kh + ( ( start_n * BLOCK_N + offs_c[:, None, None] * CHUNK_SIZE + offs_m[None, :, None] ) * stride_kn + offs_d[None, None, :] ) ) v_ptrs = ( V + offs_b * stride_vb + offs_h * stride_vh + ( ( start_n * BLOCK_N + offs_c[:, None, None] * CHUNK_SIZE + offs_m[None, :, None] ) * stride_vn + offs_d[None, None, :] ) ) param_mu_ptrs = ( PARAM_MU + offs_h * stride_mu_h + offs_d[None, None, :] ) param_phi_ptrs = ( PARAM_PHI + offs_h * stride_phi_h + offs_d[None, None, :] ) log2e = 1.4426950408889634 if MASK_TYPE == 1: m_ptrs = ( ChunkMask + offs_b * stride_mb + ( ( start_n * BLOCK_N + offs_c[:, None] * CHUNK_SIZE + offs_m[None, :] ) * stride_mn ) ) if EVEN_N: if EVEN_HEADDIM: k = tl.load( k_ptrs ) else: k = tl.load( k_ptrs, mask=offs_d[None, None, :] < headdim, other=0.0 ) else: if EVEN_HEADDIM: k = tl.load( k_ptrs, mask=( start_n * BLOCK_N + offs_c[:, None, None] * CHUNK_SIZE + offs_m[None, :, None] ) < seqlen, other=0.0 ) else: k = tl.load( k_ptrs, mask=( ( start_n * BLOCK_N + offs_c[:, None, None] * CHUNK_SIZE + offs_m[None, :, None] ) < seqlen ) & (offs_d[None, None, :] < headdim), other=0.0 ) param_mu = tl.load(param_mu_ptrs).to(k.dtype) rfa_k_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32) rfa_k_c_w += tl.sum(k * param_mu, axis=-1) rfa_k_c_w *= log2e if MASK_TYPE == 1: if EVEN_N: mask = tl.load( m_ptrs ).to(tl.float32) else: mask = tl.load( m_ptrs, mask=( start_n * BLOCK_N + offs_c[:, None] * CHUNK_SIZE + offs_m[None, :] ) < seqlen, other=0.0, ).to(tl.float32) rfa_k_c_w = rfa_k_c_w + mask rfa_k_c_w = tl.exp2(rfa_k_c_w - tl.max(rfa_k_c_w, axis=-1)[:, None]) rfa_k_c_w = rfa_k_c_w / tl.sum(rfa_k_c_w, axis=-1)[:, None] rfa_k_c = tl.sum(k * rfa_k_c_w[:, :, None].to(k.dtype), axis=-2) # TODO: understand why rematerialize offsets to save registers? offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK) out_rfa_k_ptrs = ( Out_RFA_K + offs_b * stride_ok_b + offs_h * stride_ok_h + (offs_out_c[:, None] * stride_ok_c + offs_d[None, :]) ) if EVEN_N: if EVEN_HEADDIM: tl.store( out_rfa_k_ptrs, rfa_k_c ) else: tl.store( out_rfa_k_ptrs, rfa_k_c, mask=offs_d[None, :] < headdim ) else: if EVEN_HEADDIM: tl.store( out_rfa_k_ptrs, rfa_k_c, mask=offs_out_c[:, None] < nchunks ) else: tl.store( out_rfa_k_ptrs, rfa_k_c, mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim) ) param_phi = tl.load(param_phi_ptrs).to(k.dtype) rfa_v_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32) rfa_v_c_w += tl.sum(k * param_phi, axis=-1) rfa_v_c_w -= (0.5 * tl.sum(k * k, axis=-1)) rfa_v_c_w *= log2e * softmax_scale if not EVEN_N: # Need to mask out otherwise the softmax is wrong rfa_v_c_w += tl.where( ( start_n * BLOCK_N + offs_c[:, None] * CHUNK_SIZE + offs_m[None, :] ) < seqlen, 0, float("-inf") ) if MASK_TYPE == 1: rfa_v_c_w = rfa_v_c_w + mask if EVEN_N: if EVEN_HEADDIM: v = tl.load( v_ptrs ) else: v = tl.load( v_ptrs, mask=offs_d[None, None, :] < headdim, other=0.0 ) else: if EVEN_HEADDIM: v = tl.load( v_ptrs, mask=( start_n * BLOCK_N + offs_c[:, None, None] * CHUNK_SIZE + offs_m[None, :, None] ) < seqlen, other=0.0 ) else: v = tl.load( v_ptrs, mask=( ( start_n * BLOCK_N + offs_c[:, None, None] * CHUNK_SIZE + offs_m[None, :, None] ) < seqlen ) & (offs_d[None, None, :] < headdim), other=0.0 ) rfa_v_c_w = tl.exp2(rfa_v_c_w - tl.max(rfa_v_c_w, axis=-1)[:, None]) rfa_v_c_w = rfa_v_c_w / tl.sum(rfa_v_c_w, axis=-1)[:, None] rfa_v_c = tl.sum(v * rfa_v_c_w[:, :, None].to(v.dtype), axis=-2) offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK) out_rfa_v_ptrs = ( Out_RFA_V + offs_b * stride_ov_b + offs_h * stride_ov_h + (offs_out_c[:, None] * stride_ov_c + offs_d[None, :]) ) if EVEN_N: if EVEN_HEADDIM: tl.store( out_rfa_v_ptrs, rfa_v_c ) else: tl.store( out_rfa_v_ptrs, rfa_v_c, mask=offs_d[None, :] < headdim ) else: if EVEN_HEADDIM: tl.store( out_rfa_v_ptrs, rfa_v_c, mask=offs_out_c[:, None] < nchunks ) else: tl.store( out_rfa_v_ptrs, rfa_v_c, mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim) ) def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale, chunksize): k, v, param_mu, param_phi = [ x if x.stride(-1) == 1 else x.contiguous() for x in [k, v, param_mu, param_phi] ] # shape constraints batch, nheads, seqlen, head_dim = k.shape assert seqlen % chunksize == 0, "seqlen must be divisible by chunksize" nchunks = seqlen // chunksize assert k.shape == (batch, nheads, seqlen, head_dim) assert v.shape == (batch, nheads, seqlen, head_dim) assert param_mu.shape == (1, nheads, 1, 1, head_dim) assert param_phi.shape == (1, nheads, 1, 1, head_dim) assert head_dim <= 128, "We only test head dimensions up to 128" assert k.dtype == v.dtype == param_mu.dtype == param_phi.dtype, "All tensors must have the same type" assert k.dtype in [torch.bfloat16, torch.float], "Only support bf16 and fp32 for now" assert k.is_cuda and v.is_cuda softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim) mask_type = 0 if chunk_mask is not None: mask_type = 1 assert chunk_mask.dtype == k.dtype assert chunk_mask.is_cuda assert chunk_mask.dim() == 4 assert chunk_mask.shape == (batch, 1, seqlen, 1) if chunk_mask.stride(-1) != 1: chunk_mask = chunk_mask.contiguous() mask_strides = ( (chunk_mask.stride(0), chunk_mask.stride(2)) if mask_type == 1 else (0, 0) ) out_rfa_k = torch.empty((batch, nheads, nchunks, head_dim), dtype=k.dtype, device=k.device) out_rfa_v = torch.empty((batch, nheads, nchunks, head_dim), dtype=v.dtype, device=v.device) BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16) BLOCK = 128 num_warps = 4 if head_dim <= 64 else 8 assert (BLOCK > chunksize) & (BLOCK % chunksize) == 0, "BLOCK must be divisible by chunksize" chunks_per_block = BLOCK // chunksize grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_N"]), batch * nheads) _fwd_eva_prep_kv_kernel[grid]( k, v, param_mu, param_phi, chunk_mask, out_rfa_k, out_rfa_v, softmax_scale, k.stride(0), k.stride(1), k.stride(2), v.stride(0), v.stride(1), v.stride(2), param_mu.stride(1), param_phi.stride(1), mask_strides[0], mask_strides[1], out_rfa_k.stride(0), out_rfa_k.stride(1), out_rfa_k.stride(2), out_rfa_v.stride(0), out_rfa_v.stride(1), out_rfa_v.stride(2), nheads, seqlen, nchunks, head_dim, seqlen // 32, nchunks // 32, chunks_per_block, chunksize, mask_type, BLOCK_HEADDIM, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1, ) return out_rfa_k, out_rfa_v