linzheng commited on
Commit
2c68938
·
verified ·
1 Parent(s): 9ae9789

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +80 -181
README.md CHANGED
@@ -1,199 +1,98 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
 
3
  ---
4
+ # EvaByte Model Card
5
 
6
+ **EvaByte** is a 6.5B **byte-level language model** built upon an improved architecture with multibyte prediction and EVA -- an efficient attention mechanism designed for scalability and performance. Trained on 1.5T bytes spanning natural language text, math, and code, EvaByte demonstrates the viability of efficient byte-level processing at scale -- rivaling top open-source tokenizer-based LMs using 5x less training data, excelling in coding tasks, and decoding up to 2x faster.
 
 
7
 
8
+ ## Model Resources
9
 
10
+ - **Repository:** https://github.com/openevabyte/evabyte
11
+ - **Blog:** https://hkunlp.github.io/blog/2024/evabyte
12
+ - **Paper:** Coming soon
13
 
14
  ## Model Details
15
 
16
+ EvaByte is trained using the SambaNova SN30 RDU system with a batch size of 8M bytes and 32K context length. The training process consists of 3 phases: after pre-training on 1.2T bytes (yielding **EvaByte-6.5B-Phase1**), two independent annealing runs (100B and 200B bytes respectively) are conducted with learning rate linearly decayed from 1e-4 to 0. The resulting checkpoints are merged via model soup (**EvaByte-6.5B**), which then undergoes supervised fine-tuning (**EvaByte-6.5B-SFT**).
17
+
18
+ | Stage | Model |
19
+ |:----- |:-----|
20
+ | Base (before annealing) | [EvaByte-6.5B-Phase1](https://huggingface.co/evabyte/EvaByte-6.5B-Phase1) |
21
+ | Base | [EvaByte-6.5B](https://huggingface.co/evabyte/EvaByte-6.5B) |
22
+ | SFT | [EvaByte-6.5B-SFT](https://huggingface.co/evabyte/EvaByte-6.5B-SFT) <-- you are here |
23
+
24
+
25
+ ## Usage
26
+
27
+ Please note that we do not train the model with a specific system prompt during SFT.
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModelForCausalLM
30
+ import torch
31
+
32
+ tokenizer = AutoTokenizer.from_pretrained("evabyte/EvaByte-6.5B-SFT", trust_remote_code=True)
33
+ model = AutoModelForCausalLM.from_pretrained("evabyte/EvaByte-6.5B-SFT", torch_dtype=torch.bfloat16, trust_remote_code=True).eval().to("cuda")
34
+
35
+ messages = [
36
+ {"role": "user", "content": "Write me an English pangram."}
37
+ ]
38
+ input_ids = tokenizer.apply_chat_template(
39
+ messages,
40
+ add_generation_prompt=True,
41
+ return_tensors="pt",
42
+ ).to("cuda")
43
+
44
+ # byte-by-byte generation
45
+ generation_output = model.generate(
46
+ input_ids=input_ids,
47
+ max_new_tokens=256
48
+ )
49
+ # alternatively, use multibyte generation
50
+ generation_output = model.multi_byte_generate(
51
+ input_ids=input_ids,
52
+ max_new_tokens=256
53
+ )
54
+
55
+ response = tokenizer.decode(
56
+ generation_output[0][input_ids.shape[1]:],
57
+ skip_special_tokens=False,
58
+ clean_up_tokenization_spaces=False
59
+ )
60
+ print(response)
61
+ ```
62
+ We support two modes of generation:
63
+ - `model.generate()`: When invoked, the model will generate one byte at a time. This is the default mode of generation with the Huggingface interface.
64
+ - `model.multi_byte_generate()`: generate multiple bytes in a single step, adapted from the implementation of [Medusa](https://github.com/FasterDecoding/Medusa). This will be much faster than above and usually yields the same result under the setting of greedy decoding. `model.multi_byte_generate()` supports a subset of arguments in `model.generate()`:
65
+ - `input_ids`: the input byte ids.
66
+ - `temperature`: the temperature for sampling.
67
+ - `max_length`: the maximum length of the generated sequence.
68
+ - `max_new_tokens`: the maximum number of new bytes to generate.
69
+ - `stopping_criteria`: the [stopping criteria](https://huggingface.co/docs/transformers/v4.47.1/en/internal/generation_utils#transformers.StoppingCriteria) for generation.
70
+ - `top_p`: the top-p parameter for sampling.
71
+ - `do_sample`: greedy decoding or sampling.
72
+
73
+ NOTE:
74
+ - `device_map="auto"` is not supported for > 2 GPUs
75
+ - Decoding only supports batch size of 1 with `attention_mask=None` for now.
76
+ - Only supports `torch_dtype=torch.bfloat16` for now.
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  ## Bias, Risks, and Limitations
80
+ `EvaByte-6.5B-SFT` serves primarily as a demonstration to showcase how the base model of EvaByte can be effectively fine-tuned for chat and instruction-following capabilities. While it shows improved conversational abilities, users should note that it has not undergone specific alignment or incorporated any moderation mechanisms. Like other instruction-tuned models without safety filtering, it can still generate potentially harmful, inappropriate, or factually incorrect content.
81
 
82
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ For detailed evaluation results, please refer to the [blog](https://hkunlp.github.io/blog/2024/evabyte).
85
 
 
86
 
87
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
  **BibTeX:**
90
 
91
+ ```
92
+ @misc{evabyte,
93
+ title = {EvaByte: Efficient Byte-level Language Models at Scale},
94
+ url = {},
95
+ author = {Lin Zheng and Xueliang Zhao and Guangtao Wang and Chen Wu and David Dong and Angela Wang and Mingran Wang and Haige Bo and Tony Zhang and Changran Hu and Urmish Thakker and Lingpeng Kong},
96
+ year = {2025}
97
+ }
98
+ ```