--- license: apache-2.0 base_model: distilbert-base-uncased tags: - question-answering - nlp - generated_from_trainer model-index: - name: distilbert-qa-mash-covid results: [] --- # distilbert-qa-mash-covid This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the mashqa_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.6691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9281 | 1.0 | 657 | 1.4079 | | 1.4703 | 2.0 | 1314 | 1.2640 | | 1.3062 | 3.0 | 1971 | 1.2448 | | 1.0172 | 4.0 | 2628 | 1.2780 | | 0.8991 | 5.0 | 3285 | 1.3009 | | 0.8004 | 6.0 | 3942 | 1.4255 | | 0.6502 | 7.0 | 4599 | 1.4567 | | 0.5806 | 8.0 | 5256 | 1.5352 | | 0.5117 | 9.0 | 5913 | 1.6334 | | 0.4538 | 10.0 | 6570 | 1.6691 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2