--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - question-answering - nlp - generated_from_trainer model-index: - name: bert-qa-mash-covid results: [] --- # bert-qa-mash-covid This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the mashqa_covid_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.2296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 329 | 1.3881 | | 1.6542 | 2.0 | 658 | 1.3044 | | 1.6542 | 3.0 | 987 | 1.2296 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2