--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Nexusflow/Starling-LM-7B-beta - Commencis/Commencis-LLM base_model: - Nexusflow/Starling-LM-7B-beta - Commencis/Commencis-LLM --- # Megatron_v4_2x7B Megatron_v4_2x7B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co./Nexusflow/Starling-LM-7B-beta) * [Commencis/Commencis-LLM](https://huggingface.co./Commencis/Commencis-LLM) ## 🧩 Configuration ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 dtype: float16 gate_mode: hidden experts: - source_model: Nexusflow/Starling-LM-7B-beta positive_prompts: ["You are helpful assistant.","Coding","Matematics"] - source_model: Commencis/Commencis-LLM positive_prompts: ["Makale","Hikaye"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Eurdem/Megatron_v4_2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```