--- license: gemma library_name: transformers tags: - sft - generated_from_trainer base_model: google/gemma-7b model-index: - name: gemma_ft_quote results: [] pipeline_tag: text-generation datasets: - Abirate/english_quotes language: - en widget: - text: 'Quote: With great power comes' example_title: Example 1 - text: 'Quote: Hasta la vista baby' example_title: Example 2 - text: 'Quote: Elementary, my dear watson.' example_title: Example 3 --- # Gemma_ft_Quote This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the [english quote](https://huggingface.co./datasets/Abirate/english_quotes) dataset using [LoRA](https://arxiv.org/abs/2106.09685). It is based on the example provided by google [here](https://huggingface.co./google/gemma-7b/blob/main/examples/notebook_sft_peft.ipynb). The notebook used to fine-tune the model can be found [here](https://colab.research.google.com/drive/1OMvXuK77X7yxofrhQHERUkrn3NZORXFp?usp=sharing) ## Model description The model can complete popular quotes given to it and add the author of the quote. For example, Given the qoute below: ``` Quote: With great power comes ``` The model would complete the quote and add the author of the quote: ``` Quote: With great power comes great responsibility. Author: Ben Parker. ``` Given a complete Quoute the model would add the author: ``` Quote: I'll be back. Author: Arnold Schwarzenegger. ``` ## Usage The model can be used with [transformers](https://huggingface.co./docs/transformers/en/index) library. Here's an example of loading the model in 4 bit quantization mode: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig model_id = "Eteims/gemma_ft_quote" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map="cuda:0") ``` This code would easily run in a free colab tier. After loading the model you can use it for inference: ```python text = "Quote: Elementary, my dear watson." device = "cuda:0" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Training hyperparameters The following hyperparameters were used during fine-tuning: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.8.2 - Transformers 4.38.1 - Pytorch 2.3.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2