EstherSan commited on
Commit
9b6be06
·
1 Parent(s): 8428d6c

Model save

Browse files
Files changed (2) hide show
  1. README.md +322 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: apple/mobilevit-small
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: car_identified_model_12
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: F1
25
+ type: f1
26
+ value: 0.9130434782608695
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.75
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # car_identified_model_12
36
+
37
+ This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on the imagefolder dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.5062
40
+ - F1: 0.9130
41
+ - Roc Auc: 0.9167
42
+ - Accuracy: 0.75
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 16
63
+ - eval_batch_size: 16
64
+ - seed: 42
65
+ - gradient_accumulation_steps: 8
66
+ - total_train_batch_size: 128
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - num_epochs: 300
70
+
71
+ ### Training results
72
+
73
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
74
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
75
+ | 0.2599 | 1.0 | 1 | 0.6888 | 0.4211 | 0.5417 | 0.0 |
76
+ | 0.2599 | 2.0 | 2 | 0.6888 | 0.3590 | 0.4792 | 0.0 |
77
+ | 0.2599 | 3.0 | 4 | 0.6878 | 0.4103 | 0.5208 | 0.0 |
78
+ | 0.2599 | 4.0 | 5 | 0.6872 | 0.45 | 0.5417 | 0.0 |
79
+ | 0.2599 | 5.0 | 6 | 0.6864 | 0.5116 | 0.5625 | 0.0 |
80
+ | 0.2599 | 6.0 | 8 | 0.6843 | 0.5238 | 0.5833 | 0.0833 |
81
+ | 0.2599 | 7.0 | 9 | 0.6828 | 0.5581 | 0.6042 | 0.1667 |
82
+ | 0.2599 | 8.0 | 10 | 0.6813 | 0.5238 | 0.5833 | 0.0833 |
83
+ | 0.2599 | 9.0 | 11 | 0.6803 | 0.45 | 0.5417 | 0.0833 |
84
+ | 0.2599 | 10.0 | 12 | 0.6794 | 0.4615 | 0.5625 | 0.0833 |
85
+ | 0.2599 | 11.0 | 14 | 0.6771 | 0.5128 | 0.6042 | 0.0833 |
86
+ | 0.2599 | 12.0 | 15 | 0.6762 | 0.5854 | 0.6458 | 0.0833 |
87
+ | 0.2599 | 13.0 | 16 | 0.6751 | 0.6341 | 0.6875 | 0.25 |
88
+ | 0.2599 | 14.0 | 18 | 0.6731 | 0.6667 | 0.7083 | 0.25 |
89
+ | 0.2599 | 15.0 | 19 | 0.6721 | 0.7273 | 0.75 | 0.3333 |
90
+ | 0.2599 | 16.0 | 20 | 0.6710 | 0.7273 | 0.75 | 0.3333 |
91
+ | 0.2599 | 17.0 | 21 | 0.6698 | 0.7273 | 0.75 | 0.3333 |
92
+ | 0.2599 | 18.0 | 22 | 0.6690 | 0.7273 | 0.75 | 0.3333 |
93
+ | 0.2599 | 19.0 | 24 | 0.6668 | 0.7273 | 0.75 | 0.3333 |
94
+ | 0.2599 | 20.0 | 25 | 0.6658 | 0.7273 | 0.75 | 0.3333 |
95
+ | 0.2599 | 21.0 | 26 | 0.6654 | 0.7273 | 0.75 | 0.3333 |
96
+ | 0.2599 | 22.0 | 28 | 0.6631 | 0.7273 | 0.75 | 0.3333 |
97
+ | 0.2599 | 23.0 | 29 | 0.6620 | 0.7273 | 0.75 | 0.3333 |
98
+ | 0.2599 | 24.0 | 30 | 0.6613 | 0.7273 | 0.75 | 0.3333 |
99
+ | 0.2599 | 25.0 | 31 | 0.6601 | 0.7273 | 0.75 | 0.3333 |
100
+ | 0.2599 | 26.0 | 32 | 0.6590 | 0.7273 | 0.75 | 0.3333 |
101
+ | 0.2599 | 27.0 | 34 | 0.6567 | 0.7273 | 0.75 | 0.3333 |
102
+ | 0.2599 | 28.0 | 35 | 0.6554 | 0.7273 | 0.75 | 0.3333 |
103
+ | 0.2599 | 29.0 | 36 | 0.6545 | 0.7273 | 0.75 | 0.3333 |
104
+ | 0.2599 | 30.0 | 38 | 0.6522 | 0.7273 | 0.75 | 0.3333 |
105
+ | 0.2599 | 31.0 | 39 | 0.6510 | 0.7273 | 0.75 | 0.3333 |
106
+ | 0.2599 | 32.0 | 40 | 0.6496 | 0.7273 | 0.75 | 0.3333 |
107
+ | 0.2599 | 33.0 | 41 | 0.6485 | 0.7273 | 0.75 | 0.3333 |
108
+ | 0.2599 | 34.0 | 42 | 0.6476 | 0.7273 | 0.75 | 0.3333 |
109
+ | 0.2599 | 35.0 | 44 | 0.6456 | 0.7273 | 0.75 | 0.3333 |
110
+ | 0.2599 | 36.0 | 45 | 0.6448 | 0.7556 | 0.7708 | 0.3333 |
111
+ | 0.2599 | 37.0 | 46 | 0.6437 | 0.7556 | 0.7708 | 0.3333 |
112
+ | 0.2599 | 38.0 | 48 | 0.6418 | 0.7727 | 0.7917 | 0.4167 |
113
+ | 0.2599 | 39.0 | 49 | 0.6410 | 0.7727 | 0.7917 | 0.4167 |
114
+ | 0.2599 | 40.0 | 50 | 0.6402 | 0.7727 | 0.7917 | 0.4167 |
115
+ | 0.2599 | 41.0 | 51 | 0.6392 | 0.7727 | 0.7917 | 0.4167 |
116
+ | 0.2599 | 42.0 | 52 | 0.6380 | 0.7907 | 0.8125 | 0.5 |
117
+ | 0.2599 | 43.0 | 54 | 0.6357 | 0.8182 | 0.8333 | 0.5833 |
118
+ | 0.2599 | 44.0 | 55 | 0.6349 | 0.8182 | 0.8333 | 0.5833 |
119
+ | 0.2599 | 45.0 | 56 | 0.6334 | 0.8000 | 0.8125 | 0.5 |
120
+ | 0.2599 | 46.0 | 58 | 0.6313 | 0.8000 | 0.8125 | 0.5 |
121
+ | 0.2599 | 47.0 | 59 | 0.6312 | 0.8000 | 0.8125 | 0.5 |
122
+ | 0.2599 | 48.0 | 60 | 0.6302 | 0.8182 | 0.8333 | 0.5833 |
123
+ | 0.2599 | 49.0 | 61 | 0.6291 | 0.8182 | 0.8333 | 0.5833 |
124
+ | 0.2599 | 50.0 | 62 | 0.6279 | 0.8182 | 0.8333 | 0.5833 |
125
+ | 0.2599 | 51.0 | 64 | 0.6254 | 0.8444 | 0.8542 | 0.6667 |
126
+ | 0.2599 | 52.0 | 65 | 0.6241 | 0.8696 | 0.875 | 0.6667 |
127
+ | 0.2599 | 53.0 | 66 | 0.6230 | 0.8696 | 0.875 | 0.6667 |
128
+ | 0.2599 | 54.0 | 68 | 0.6210 | 0.8936 | 0.8958 | 0.6667 |
129
+ | 0.2599 | 55.0 | 69 | 0.6200 | 0.9130 | 0.9167 | 0.75 |
130
+ | 0.2599 | 56.0 | 70 | 0.6192 | 0.9130 | 0.9167 | 0.75 |
131
+ | 0.2599 | 57.0 | 71 | 0.6175 | 0.8696 | 0.875 | 0.6667 |
132
+ | 0.2599 | 58.0 | 72 | 0.6171 | 0.9130 | 0.9167 | 0.75 |
133
+ | 0.2599 | 59.0 | 74 | 0.6157 | 0.9130 | 0.9167 | 0.75 |
134
+ | 0.2599 | 60.0 | 75 | 0.6147 | 0.9130 | 0.9167 | 0.75 |
135
+ | 0.2599 | 61.0 | 76 | 0.6140 | 0.9130 | 0.9167 | 0.75 |
136
+ | 0.2599 | 62.0 | 78 | 0.6120 | 0.9130 | 0.9167 | 0.75 |
137
+ | 0.2599 | 63.0 | 79 | 0.6107 | 0.9130 | 0.9167 | 0.75 |
138
+ | 0.2599 | 64.0 | 80 | 0.6088 | 0.8889 | 0.8958 | 0.6667 |
139
+ | 0.2599 | 65.0 | 81 | 0.6083 | 0.8889 | 0.8958 | 0.6667 |
140
+ | 0.2599 | 66.0 | 82 | 0.6076 | 0.9130 | 0.9167 | 0.75 |
141
+ | 0.2599 | 67.0 | 84 | 0.6058 | 0.9130 | 0.9167 | 0.75 |
142
+ | 0.2599 | 68.0 | 85 | 0.6042 | 0.9130 | 0.9167 | 0.75 |
143
+ | 0.2599 | 69.0 | 86 | 0.6034 | 0.9130 | 0.9167 | 0.75 |
144
+ | 0.2599 | 70.0 | 88 | 0.6017 | 0.9130 | 0.9167 | 0.75 |
145
+ | 0.2599 | 71.0 | 89 | 0.6001 | 0.9130 | 0.9167 | 0.75 |
146
+ | 0.2599 | 72.0 | 90 | 0.5998 | 0.9130 | 0.9167 | 0.75 |
147
+ | 0.2599 | 73.0 | 91 | 0.5993 | 0.9130 | 0.9167 | 0.75 |
148
+ | 0.2599 | 74.0 | 92 | 0.5985 | 0.9130 | 0.9167 | 0.75 |
149
+ | 0.2599 | 75.0 | 94 | 0.5949 | 0.9130 | 0.9167 | 0.75 |
150
+ | 0.2599 | 76.0 | 95 | 0.5938 | 0.9130 | 0.9167 | 0.75 |
151
+ | 0.2599 | 77.0 | 96 | 0.5941 | 0.9130 | 0.9167 | 0.75 |
152
+ | 0.2599 | 78.0 | 98 | 0.5925 | 0.9130 | 0.9167 | 0.75 |
153
+ | 0.2599 | 79.0 | 99 | 0.5922 | 0.9130 | 0.9167 | 0.75 |
154
+ | 0.2599 | 80.0 | 100 | 0.5911 | 0.9130 | 0.9167 | 0.75 |
155
+ | 0.2599 | 81.0 | 101 | 0.5905 | 0.9130 | 0.9167 | 0.75 |
156
+ | 0.2599 | 82.0 | 102 | 0.5893 | 0.9130 | 0.9167 | 0.75 |
157
+ | 0.2599 | 83.0 | 104 | 0.5872 | 0.9130 | 0.9167 | 0.75 |
158
+ | 0.2599 | 84.0 | 105 | 0.5855 | 0.9130 | 0.9167 | 0.75 |
159
+ | 0.2599 | 85.0 | 106 | 0.5852 | 0.9130 | 0.9167 | 0.75 |
160
+ | 0.2599 | 86.0 | 108 | 0.5835 | 0.9130 | 0.9167 | 0.75 |
161
+ | 0.2599 | 87.0 | 109 | 0.5835 | 0.9130 | 0.9167 | 0.75 |
162
+ | 0.2599 | 88.0 | 110 | 0.5831 | 0.9130 | 0.9167 | 0.75 |
163
+ | 0.2599 | 89.0 | 111 | 0.5822 | 0.9130 | 0.9167 | 0.75 |
164
+ | 0.2599 | 90.0 | 112 | 0.5815 | 0.9130 | 0.9167 | 0.75 |
165
+ | 0.2599 | 91.0 | 114 | 0.5803 | 0.9130 | 0.9167 | 0.75 |
166
+ | 0.2599 | 92.0 | 115 | 0.5779 | 0.9130 | 0.9167 | 0.75 |
167
+ | 0.2599 | 93.0 | 116 | 0.5770 | 0.9130 | 0.9167 | 0.75 |
168
+ | 0.2599 | 94.0 | 118 | 0.5758 | 0.9130 | 0.9167 | 0.75 |
169
+ | 0.2599 | 95.0 | 119 | 0.5748 | 0.9130 | 0.9167 | 0.75 |
170
+ | 0.2599 | 96.0 | 120 | 0.5744 | 0.9130 | 0.9167 | 0.75 |
171
+ | 0.2599 | 97.0 | 121 | 0.5739 | 0.9130 | 0.9167 | 0.75 |
172
+ | 0.2599 | 98.0 | 122 | 0.5730 | 0.9130 | 0.9167 | 0.75 |
173
+ | 0.2599 | 99.0 | 124 | 0.5710 | 0.9130 | 0.9167 | 0.75 |
174
+ | 0.2599 | 100.0 | 125 | 0.5703 | 0.9130 | 0.9167 | 0.75 |
175
+ | 0.2599 | 101.0 | 126 | 0.5687 | 0.9130 | 0.9167 | 0.75 |
176
+ | 0.2599 | 102.0 | 128 | 0.5664 | 0.9130 | 0.9167 | 0.75 |
177
+ | 0.2599 | 103.0 | 129 | 0.5657 | 0.9130 | 0.9167 | 0.75 |
178
+ | 0.2599 | 104.0 | 130 | 0.5657 | 0.9130 | 0.9167 | 0.75 |
179
+ | 0.2599 | 105.0 | 131 | 0.5639 | 0.9130 | 0.9167 | 0.75 |
180
+ | 0.2599 | 106.0 | 132 | 0.5642 | 0.9130 | 0.9167 | 0.75 |
181
+ | 0.2599 | 107.0 | 134 | 0.5617 | 0.9130 | 0.9167 | 0.75 |
182
+ | 0.2599 | 108.0 | 135 | 0.5604 | 0.9130 | 0.9167 | 0.75 |
183
+ | 0.2599 | 109.0 | 136 | 0.5598 | 0.9130 | 0.9167 | 0.75 |
184
+ | 0.2599 | 110.0 | 138 | 0.5579 | 0.9130 | 0.9167 | 0.75 |
185
+ | 0.2599 | 111.0 | 139 | 0.5566 | 0.8936 | 0.8958 | 0.75 |
186
+ | 0.2599 | 112.0 | 140 | 0.5561 | 0.9130 | 0.9167 | 0.75 |
187
+ | 0.2599 | 113.0 | 141 | 0.5567 | 0.8936 | 0.8958 | 0.75 |
188
+ | 0.2599 | 114.0 | 142 | 0.5571 | 0.8936 | 0.8958 | 0.75 |
189
+ | 0.2599 | 115.0 | 144 | 0.5536 | 0.8936 | 0.8958 | 0.75 |
190
+ | 0.2599 | 116.0 | 145 | 0.5537 | 0.8936 | 0.8958 | 0.75 |
191
+ | 0.2599 | 117.0 | 146 | 0.5510 | 0.8936 | 0.8958 | 0.75 |
192
+ | 0.2599 | 118.0 | 148 | 0.5496 | 0.8936 | 0.8958 | 0.75 |
193
+ | 0.2599 | 119.0 | 149 | 0.5492 | 0.9130 | 0.9167 | 0.75 |
194
+ | 0.2599 | 120.0 | 150 | 0.5492 | 0.9130 | 0.9167 | 0.75 |
195
+ | 0.2599 | 121.0 | 151 | 0.5490 | 0.9333 | 0.9375 | 0.75 |
196
+ | 0.2599 | 122.0 | 152 | 0.5483 | 0.9130 | 0.9167 | 0.75 |
197
+ | 0.2599 | 123.0 | 154 | 0.5464 | 0.9130 | 0.9167 | 0.75 |
198
+ | 0.2599 | 124.0 | 155 | 0.5477 | 0.9130 | 0.9167 | 0.75 |
199
+ | 0.2599 | 125.0 | 156 | 0.5469 | 0.9130 | 0.9167 | 0.75 |
200
+ | 0.2599 | 126.0 | 158 | 0.5445 | 0.9130 | 0.9167 | 0.75 |
201
+ | 0.2599 | 127.0 | 159 | 0.5450 | 0.9130 | 0.9167 | 0.75 |
202
+ | 0.2599 | 128.0 | 160 | 0.5436 | 0.9130 | 0.9167 | 0.75 |
203
+ | 0.2599 | 129.0 | 161 | 0.5433 | 0.9130 | 0.9167 | 0.75 |
204
+ | 0.2599 | 130.0 | 162 | 0.5417 | 0.9130 | 0.9167 | 0.75 |
205
+ | 0.2599 | 131.0 | 164 | 0.5416 | 0.9130 | 0.9167 | 0.75 |
206
+ | 0.2599 | 132.0 | 165 | 0.5403 | 0.9130 | 0.9167 | 0.75 |
207
+ | 0.2599 | 133.0 | 166 | 0.5404 | 0.9333 | 0.9375 | 0.75 |
208
+ | 0.2599 | 134.0 | 168 | 0.5390 | 0.9130 | 0.9167 | 0.75 |
209
+ | 0.2599 | 135.0 | 169 | 0.5389 | 0.9130 | 0.9167 | 0.75 |
210
+ | 0.2599 | 136.0 | 170 | 0.5376 | 0.9130 | 0.9167 | 0.75 |
211
+ | 0.2599 | 137.0 | 171 | 0.5374 | 0.9130 | 0.9167 | 0.75 |
212
+ | 0.2599 | 138.0 | 172 | 0.5372 | 0.9130 | 0.9167 | 0.75 |
213
+ | 0.2599 | 139.0 | 174 | 0.5348 | 0.9130 | 0.9167 | 0.75 |
214
+ | 0.2599 | 140.0 | 175 | 0.5356 | 0.9130 | 0.9167 | 0.75 |
215
+ | 0.2599 | 141.0 | 176 | 0.5355 | 0.9130 | 0.9167 | 0.75 |
216
+ | 0.2599 | 142.0 | 178 | 0.5323 | 0.9130 | 0.9167 | 0.75 |
217
+ | 0.2599 | 143.0 | 179 | 0.5323 | 0.9130 | 0.9167 | 0.75 |
218
+ | 0.2599 | 144.0 | 180 | 0.5332 | 0.9130 | 0.9167 | 0.75 |
219
+ | 0.2599 | 145.0 | 181 | 0.5320 | 0.9130 | 0.9167 | 0.75 |
220
+ | 0.2599 | 146.0 | 182 | 0.5315 | 0.9130 | 0.9167 | 0.75 |
221
+ | 0.2599 | 147.0 | 184 | 0.5301 | 0.9130 | 0.9167 | 0.75 |
222
+ | 0.2599 | 148.0 | 185 | 0.5284 | 0.9130 | 0.9167 | 0.75 |
223
+ | 0.2599 | 149.0 | 186 | 0.5296 | 0.9130 | 0.9167 | 0.75 |
224
+ | 0.2599 | 150.0 | 188 | 0.5301 | 0.9130 | 0.9167 | 0.75 |
225
+ | 0.2599 | 151.0 | 189 | 0.5282 | 0.9130 | 0.9167 | 0.75 |
226
+ | 0.2599 | 152.0 | 190 | 0.5263 | 0.9130 | 0.9167 | 0.75 |
227
+ | 0.2599 | 153.0 | 191 | 0.5263 | 0.9130 | 0.9167 | 0.75 |
228
+ | 0.2599 | 154.0 | 192 | 0.5270 | 0.9130 | 0.9167 | 0.75 |
229
+ | 0.2599 | 155.0 | 194 | 0.5274 | 0.9130 | 0.9167 | 0.75 |
230
+ | 0.2599 | 156.0 | 195 | 0.5264 | 0.9130 | 0.9167 | 0.75 |
231
+ | 0.2599 | 157.0 | 196 | 0.5281 | 0.9130 | 0.9167 | 0.75 |
232
+ | 0.2599 | 158.0 | 198 | 0.5232 | 0.9130 | 0.9167 | 0.75 |
233
+ | 0.2599 | 159.0 | 199 | 0.5218 | 0.9130 | 0.9167 | 0.75 |
234
+ | 0.2599 | 160.0 | 200 | 0.5212 | 0.9130 | 0.9167 | 0.75 |
235
+ | 0.2599 | 161.0 | 201 | 0.5214 | 0.9130 | 0.9167 | 0.75 |
236
+ | 0.2599 | 162.0 | 202 | 0.5222 | 0.9130 | 0.9167 | 0.75 |
237
+ | 0.2599 | 163.0 | 204 | 0.5210 | 0.9130 | 0.9167 | 0.75 |
238
+ | 0.2599 | 164.0 | 205 | 0.5207 | 0.9130 | 0.9167 | 0.75 |
239
+ | 0.2599 | 165.0 | 206 | 0.5210 | 0.9130 | 0.9167 | 0.75 |
240
+ | 0.2599 | 166.0 | 208 | 0.5195 | 0.9130 | 0.9167 | 0.75 |
241
+ | 0.2599 | 167.0 | 209 | 0.5217 | 0.9130 | 0.9167 | 0.75 |
242
+ | 0.2599 | 168.0 | 210 | 0.5207 | 0.9130 | 0.9167 | 0.75 |
243
+ | 0.2599 | 169.0 | 211 | 0.5190 | 0.9130 | 0.9167 | 0.75 |
244
+ | 0.2599 | 170.0 | 212 | 0.5181 | 0.9130 | 0.9167 | 0.75 |
245
+ | 0.2599 | 171.0 | 214 | 0.5183 | 0.9130 | 0.9167 | 0.75 |
246
+ | 0.2599 | 172.0 | 215 | 0.5183 | 0.9130 | 0.9167 | 0.75 |
247
+ | 0.2599 | 173.0 | 216 | 0.5202 | 0.9130 | 0.9167 | 0.75 |
248
+ | 0.2599 | 174.0 | 218 | 0.5180 | 0.9130 | 0.9167 | 0.75 |
249
+ | 0.2599 | 175.0 | 219 | 0.5189 | 0.9130 | 0.9167 | 0.75 |
250
+ | 0.2599 | 176.0 | 220 | 0.5157 | 0.9130 | 0.9167 | 0.75 |
251
+ | 0.2599 | 177.0 | 221 | 0.5168 | 0.9130 | 0.9167 | 0.75 |
252
+ | 0.2599 | 178.0 | 222 | 0.5161 | 0.9130 | 0.9167 | 0.75 |
253
+ | 0.2599 | 179.0 | 224 | 0.5160 | 0.9130 | 0.9167 | 0.75 |
254
+ | 0.2599 | 180.0 | 225 | 0.5178 | 0.9130 | 0.9167 | 0.75 |
255
+ | 0.2599 | 181.0 | 226 | 0.5166 | 0.9130 | 0.9167 | 0.75 |
256
+ | 0.2599 | 182.0 | 228 | 0.5146 | 0.9130 | 0.9167 | 0.75 |
257
+ | 0.2599 | 183.0 | 229 | 0.5143 | 0.9130 | 0.9167 | 0.75 |
258
+ | 0.2599 | 184.0 | 230 | 0.5128 | 0.9130 | 0.9167 | 0.75 |
259
+ | 0.2599 | 185.0 | 231 | 0.5111 | 0.9130 | 0.9167 | 0.75 |
260
+ | 0.2599 | 186.0 | 232 | 0.5119 | 0.9333 | 0.9375 | 0.75 |
261
+ | 0.2599 | 187.0 | 234 | 0.5116 | 0.9130 | 0.9167 | 0.75 |
262
+ | 0.2599 | 188.0 | 235 | 0.5099 | 0.9130 | 0.9167 | 0.75 |
263
+ | 0.2599 | 189.0 | 236 | 0.5108 | 0.9130 | 0.9167 | 0.75 |
264
+ | 0.2599 | 190.0 | 238 | 0.5102 | 0.9130 | 0.9167 | 0.75 |
265
+ | 0.2599 | 191.0 | 239 | 0.5103 | 0.9130 | 0.9167 | 0.75 |
266
+ | 0.2599 | 192.0 | 240 | 0.5102 | 0.9130 | 0.9167 | 0.75 |
267
+ | 0.2599 | 193.0 | 241 | 0.5102 | 0.9130 | 0.9167 | 0.75 |
268
+ | 0.2599 | 194.0 | 242 | 0.5110 | 0.9130 | 0.9167 | 0.75 |
269
+ | 0.2599 | 195.0 | 244 | 0.5093 | 0.9130 | 0.9167 | 0.75 |
270
+ | 0.2599 | 196.0 | 245 | 0.5102 | 0.9130 | 0.9167 | 0.75 |
271
+ | 0.2599 | 197.0 | 246 | 0.5094 | 0.9130 | 0.9167 | 0.75 |
272
+ | 0.2599 | 198.0 | 248 | 0.5082 | 0.9130 | 0.9167 | 0.75 |
273
+ | 0.2599 | 199.0 | 249 | 0.5069 | 0.9362 | 0.9375 | 0.8333 |
274
+ | 0.2599 | 200.0 | 250 | 0.5081 | 0.9130 | 0.9167 | 0.75 |
275
+ | 0.2599 | 201.0 | 251 | 0.5082 | 0.9130 | 0.9167 | 0.75 |
276
+ | 0.2599 | 202.0 | 252 | 0.5090 | 0.9130 | 0.9167 | 0.75 |
277
+ | 0.2599 | 203.0 | 254 | 0.5076 | 0.9130 | 0.9167 | 0.75 |
278
+ | 0.2599 | 204.0 | 255 | 0.5081 | 0.9130 | 0.9167 | 0.75 |
279
+ | 0.2599 | 205.0 | 256 | 0.5091 | 0.9130 | 0.9167 | 0.75 |
280
+ | 0.2599 | 206.0 | 258 | 0.5069 | 0.9130 | 0.9167 | 0.75 |
281
+ | 0.2599 | 207.0 | 259 | 0.5067 | 0.9130 | 0.9167 | 0.75 |
282
+ | 0.2599 | 208.0 | 260 | 0.5061 | 0.9362 | 0.9375 | 0.8333 |
283
+ | 0.2599 | 209.0 | 261 | 0.5076 | 0.9130 | 0.9167 | 0.75 |
284
+ | 0.2599 | 210.0 | 262 | 0.5082 | 0.9130 | 0.9167 | 0.75 |
285
+ | 0.2599 | 211.0 | 264 | 0.5069 | 0.9130 | 0.9167 | 0.75 |
286
+ | 0.2599 | 212.0 | 265 | 0.5074 | 0.9130 | 0.9167 | 0.75 |
287
+ | 0.2599 | 213.0 | 266 | 0.5077 | 0.9130 | 0.9167 | 0.75 |
288
+ | 0.2599 | 214.0 | 268 | 0.5058 | 0.9130 | 0.9167 | 0.75 |
289
+ | 0.2599 | 215.0 | 269 | 0.5063 | 0.9130 | 0.9167 | 0.75 |
290
+ | 0.2599 | 216.0 | 270 | 0.5059 | 0.9130 | 0.9167 | 0.75 |
291
+ | 0.2599 | 217.0 | 271 | 0.5059 | 0.9130 | 0.9167 | 0.75 |
292
+ | 0.2599 | 218.0 | 272 | 0.5050 | 0.9130 | 0.9167 | 0.75 |
293
+ | 0.2599 | 219.0 | 274 | 0.5056 | 0.9130 | 0.9167 | 0.75 |
294
+ | 0.2599 | 220.0 | 275 | 0.5053 | 0.9130 | 0.9167 | 0.75 |
295
+ | 0.2599 | 221.0 | 276 | 0.5058 | 0.9130 | 0.9167 | 0.75 |
296
+ | 0.2599 | 222.0 | 278 | 0.5051 | 0.9130 | 0.9167 | 0.75 |
297
+ | 0.2599 | 223.0 | 279 | 0.5047 | 0.9130 | 0.9167 | 0.75 |
298
+ | 0.2599 | 224.0 | 280 | 0.5041 | 0.9362 | 0.9375 | 0.8333 |
299
+ | 0.2599 | 225.0 | 281 | 0.5049 | 0.9130 | 0.9167 | 0.75 |
300
+ | 0.2599 | 226.0 | 282 | 0.5046 | 0.9362 | 0.9375 | 0.8333 |
301
+ | 0.2599 | 227.0 | 284 | 0.5078 | 0.9130 | 0.9167 | 0.75 |
302
+ | 0.2599 | 228.0 | 285 | 0.5064 | 0.9130 | 0.9167 | 0.75 |
303
+ | 0.2599 | 229.0 | 286 | 0.5065 | 0.9130 | 0.9167 | 0.75 |
304
+ | 0.2599 | 230.0 | 288 | 0.5066 | 0.9130 | 0.9167 | 0.75 |
305
+ | 0.2599 | 231.0 | 289 | 0.5058 | 0.9130 | 0.9167 | 0.75 |
306
+ | 0.2599 | 232.0 | 290 | 0.5067 | 0.9130 | 0.9167 | 0.75 |
307
+ | 0.2599 | 233.0 | 291 | 0.5079 | 0.9130 | 0.9167 | 0.75 |
308
+ | 0.2599 | 234.0 | 292 | 0.5085 | 0.9130 | 0.9167 | 0.75 |
309
+ | 0.2599 | 235.0 | 294 | 0.5073 | 0.9130 | 0.9167 | 0.75 |
310
+ | 0.2599 | 236.0 | 295 | 0.5023 | 0.9362 | 0.9375 | 0.8333 |
311
+ | 0.2599 | 237.0 | 296 | 0.5030 | 0.9362 | 0.9375 | 0.8333 |
312
+ | 0.2599 | 238.0 | 298 | 0.5044 | 0.9130 | 0.9167 | 0.75 |
313
+ | 0.2599 | 239.0 | 299 | 0.5055 | 0.9130 | 0.9167 | 0.75 |
314
+ | 0.2599 | 240.0 | 300 | 0.5062 | 0.9130 | 0.9167 | 0.75 |
315
+
316
+
317
+ ### Framework versions
318
+
319
+ - Transformers 4.35.0
320
+ - Pytorch 2.1.0+cu121
321
+ - Datasets 2.14.6
322
+ - Tokenizers 0.14.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b0f5e07c9061d188d0f73da103cd84e4586c84ad2d5f33f308ab9c71121e3e81
3
  size 19856696
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72aa9bbd532a1576fad8e335551073cbec76bd49ed1a861d79ac0889efc24360
3
  size 19856696